分からない問題はここに書いてね365at MATH
分からない問題はここに書いてね365 - 暇つぶし2ch793:132人目の素数さん
12/02/12 22:17:04.14
>>788
fは連続関数なので、D(有界閉集合)上のどこかで最大値を取る
Dの境界上ではf=0
Dの内部ではf>0
従って、Dの内部で最大
偏微分でもすれば?

794:783
12/02/12 22:17:14.77
(n=1 to ∞)はnが1から∞まで
という意味だから
1/nは1/2ではなく1となりませんか?

795:132人目の素数さん
12/02/12 22:20:52.19
Σ(n=1 to ∞)[1/(n+1)-1/(n+3))]
=lim_{a->inf}sun(1/(n+1)-1/(n+3),n=1,n=a)
=lim_{a->inf}((1/2-1/4)+(1/3-1/5)+...+(1/a-1/(a+2))+(1/(a+1)-1/(a+3))).


796:783
12/02/12 22:21:54.63
訂正
(n=1 to ∞)はnが1から∞まで
という意味だから
1/nは1/2からではなく1から始まりませんか?

797:132人目の素数さん
12/02/12 22:22:48.57
>>794
なりません

798:783
12/02/12 22:24:31.64
>>795
ありがとうございます

799:132人目の素数さん
12/02/12 22:25:02.00
>>793
ありがとうございます。
解答ではラグランジェの乗法が使ってなかったので疑問だったんですが、おかげでなぞが解けました。

800:132人目の素数さん
12/02/12 22:25:24.79
f(x,y) = xy(1-x-y) , 領域D = { (x,y) | x >= 0, y >= 0, 1-x-y >= 0} のときのf(x,y)の最大値とそのときの(x,y)を求めよ。
x=rcost
y=rsint
f=r^2cs(1-r(c+s))
ft=r^2(-ss+cc)(1-r(c+s))+r^2cs(-r(-s+c))=0




801:132人目の素数さん
12/02/12 22:25:57.65
アホーアホー

802:783
12/02/12 22:29:00.66
>>797
1/nのnに1を代入すると1になるとおもうのですが...
文の意味合いが>>783を前提としている事を考慮して下さい

803:132人目の素数さん
12/02/12 22:30:51.00
>>800
エスパー何段の問題文ですか?

804:132人目の素数さん
12/02/12 22:32:39.91
>>802
その1/nは
>Σ(n=1 to ∞)[1/(n+1)-1/(n+3)]
この式のどこに書いてあるの?

805:132人目の素数さん
12/02/12 22:35:00.20
0
a(1)
a(1)+a(2)
a(1)+a(2)+a(3)
a(1)+a(2)+a(3)+a(4)
a(1)+a(2)+a(3)+a(4)+a(5)
...
a(1)+a(2)+...+a(99)+a(100)
...
a(1)+a(2)+...+a(1023)+a(1024)
...

というのの一つをa(1)+a(2)+...+a(w-1)+a(w)と表してるだけなんだから
w=1のときはa(1)であってa(0)が出てくるわけじゃない。


806:802
12/02/12 22:36:59.59
>>804
ここに書いてありました。このページの解答の中です。

URLリンク(m.chiebukuro.yahoo.co.jp)

807:802
12/02/12 22:40:26.26
>>805
ありがとうございます。納得しました。

808:132人目の素数さん
12/02/13 00:20:47.71
f=r^2cs(1-r(c+s))
c+s=p
cs=(p^2-1)/2
f=r^2(p^2-1)(1-pr)/2
=r^3(p-1)(p+1)(1/r-p)/2
p=+-1,1/r->f=0


809:132人目の素数さん
12/02/13 00:55:26.96
>>779
兎に角踏ん張ることだ。堪えていれば事態が良い方に進展する可能性は十分ある。
よく考え、実行する。日本だって長所、美点はたくさんある。投げたらあかん
と、自分に言い聞かせてみる

810:132人目の素数さん
12/02/13 00:57:14.30
すいません、少し量が多いのですが質問させてください。
高校入試レベルの図形問題です。

1.右の立体ABCD-EFGHは、一辺の長さが2cmの立方体である。
頂点AとCを結び、線分AC上にある点をPとする。次の各問に答えよ。
1)右の図は、頂点Eと頂点B、頂点Eと点P、頂点Bと点Pをそれぞれ結んだ場合を表している。AP:PC=1:2のとき、三角すいE-ABPの体積は何立方cmか。
2)右の図は、点Pが線分ACの中点となるとき、点Pから底面EFGHに垂線をひき底面EFGHとの交点をRとし、点Pと頂点Gを結んだ線分PG上に点P、頂点Gのいずれとも異なる点Qをとり、頂点Eと点Qを結んだ線分EQと線分PRとの交点をSとした場合を表している。
PQ:QG=3:4のとき、線分PSの長さと線分SRの長さの比を最も簡単な整数の比で表わせ。

2.右の図に示した立体A-BCDEは、底面BCDEが一辺の長さ6cmの正方形で、AB=AC=AD=AE=5cmの正四角すいである。
点Pは、頂点Aを出発し、辺AB、辺BC上を毎秒1秒の速さで動き、11秒後に頂点Cに到着する。次の各問に答えよ。
1)右の図は、点Pが頂点Aを出発してから1秒後のとき、頂点Cと点P、頂点Dと点P、頂点Eと点Pをそれぞれ結んだ場合を表している。立体P-BCDEの体積は何立方cmか。
2)右の図は、点PがBC上にあるとき、頂点Aと点P、頂点Dと点Pをそれぞれ結んだ場合を示している。
①立体A-PCDの体積が立体A-BCDEの体積の三分の一になるとき、線分PCの長さは何cmか。
②AP+PDの長さが最も短くなるのは、点Pが頂点Aを出発してから何秒後か。


811:132人目の素数さん
12/02/13 01:38:33.07
宿題は自分でやってくれ

812:132人目の素数さん
12/02/13 05:18:32.12
>>778
x'-x=t
x'*e^(-t)-x*e^(-t)=t*e^(-t)
d/dt(x*e^(-t))=t*e^(-t)
∫t*e^(-t)dt=-t*e^(-t)+∫e^(-t)dt=-(t+1)*e^(-t)+Cから
x*e^(-t)=-(t+1)*e^(-t)+C
x=C*e^t-t-1
x(0)=2よりC=3 x=3*e^t-t-1

x=e^(a*t)とすると
x'=a*e^(a*t) x''=a^2*e^(a*t)から
x''+A*x'+B=0は(a^2+A*a+B)*e^(a*t)=0 a^2+A*a+B=0

x''+3x'+2x=0
x=C1*e^(-t)+C2*e^(-2*t)
x(0)=0 x'(0)=2からC1=2 C2=-2 x=2e^(-t)-2*e^(-2*t)

813:132人目の素数さん
12/02/13 05:56:20.35
>>810
2.2)②
A-BCDの展開図を書く
ADとBCの交点にPが来た時が最短。BP=21/5



最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch