12/03/10 19:59:52.44
>>528-532
おいらは、Kummerさんも歓迎だよ
但し、定理の証明は自スレでやってもらえば
それから”通報するぞ”は無意味だ
通報してから、書くように
もっとも、この程度では通報しても荒しとは認められないだろうな
536:現代数学の系譜11 ガロア理論を読む
12/03/10 20:11:48.70
>>525
こんなのが、あった
URLリンク(ja.wikipedia.org)
(抜粋)
アーベル-ルフィニの定理(Abel-Ruffini theorem)は、五次以上の代数方程式には解の公式が存在しない、と主張する定理である。
より正確には、5以上の任意の整数 n に対して、一般の n 次方程式を代数的に解く方法は存在しない、という定理である。
1770年 ラグランジュが代数方程式の解法と根の置換について考察し、代数方程式が解けるための条件を初めて見いだす。
1799年 ルフィニが最初の不可能性の論文を発表。同年ガウスが代数学の基本定理を証明した学位論文中で五次方程式の不可能性について予言。
1824年 最初の論文によりアーベルによってルフィニの欠陥が解決される。定理の成立。
1829年 アーベル没。ガロアが代数方程式の可解性について最初の論文を書く。
1832年 ガロア没。
1846年 リウヴィルによりガロアの仕事が世に出る。
同時期の貢献としては他にガウスのものがある。ガウスは不可能性の直接証明こそ行わなかったが、それが不可能問題であることに確信を持っていた。学位論文でそのことに触れた他、『整数論』(1801年) の中でも「不可能なのはほぼ確実」と断定している。
代数的に可解な系列として円分方程式論を展開しているが、これはアーベルやガロアの理論のプロトタイプといえるものであり、両者に影響を与えた。
なおガウスは後年アーベル、ガロアの論文を受け取っているが、全く関心を示さなかったという。ガウスにとって既に重要な問題とは見えなかったらしい。
ラグランジュを学んだアーベルは、当初五次方程式の解法を発見しようとしていたが、そのうちに不可能かも知れないと考えるようになり、研究の方向を転換する。
一方ガロアはアーベルとは独立でほぼ同じ経路を辿っていた。アーベルの仕事については知らなかったが、後に恩師に薦められて存在を知る。
コーシーが自分の時と同じく、アーベルの論文も紛失したことに憤慨する手紙が残されている。
どちらの証明も、本質的にはガロア群の構造に触れることで不可能性を証明しているが、アーベル、ルフィニらには「群」という意識がまだ存在しておらず、技巧的な証明に留まっていた。
537:Kummer ◆SgHZJkrsn08e
12/03/10 20:28:25.80
>但し、定理の証明は自スレでやってもらえば
ここでやるわけないw
538:現代数学の系譜11 ガロア理論を読む
12/03/10 20:28:58.07
>>536
>同時期の貢献としては他にガウスのものがある。ガウスは不可能性の直接証明こそ行わなかったが、それが不可能問題であることに確信を持っていた。学位論文でそのことに触れた他、『整数論』(1801年) の中でも「不可能なのはほぼ確実」と断定している。
>代数的に可解な系列として円分方程式論を展開しているが、これはアーベルやガロアの理論のプロトタイプといえるものであり、両者に影響を与えた。
ガウスは、作図可能な正多角形の研究を通じて、円分方程式論を展開している。これは、正にべき根と巡回群に関する研究である。それを通じて、べき根拡大には限界があり、一般の5次方程式はべき根では解けないことがガウスには直感的に分かったのではないだろうか
URLリンク(ja.wikipedia.org)
(抜粋)
作図可能な正多角形
正三角形と正五角形、この2つの正多角形の頂点の数の最小公倍数の値と同じ数の頂点を持つ正十五角形、正方形、
およびこれらの頂点の数に2の冪を乗じた数の頂点を持つ正多角形が作図可能である事は古代ギリシアの数学者エウクレイデス(ユークリッド)が著した『原論』に記されており、よく知られていた。
長い間それ以上のことは判明しなかったが、ガウスが1796年3月30日に、正十七角形が作図可能であることを発見した[3][4]。
同時に正五十一角形、正八十五角形、正二百五十五角形、及び17もしくはこれらの頂点の数に2の冪を乗じた数の頂点を持つ正多角形が作図可能であることも発見されたことになる。
ガウスはさらに1801年に出版した『整数論の研究』において、正 n 角形が作図可能であるための必要十分条件が、n が2の冪と相異なるフェルマー素数の積、すなわち
n = 2mFaFb…Fc(Fa , Fb , … ,Fc は全て異なるフェルマー素数、m は非負整数)
の形であることを示した[5]。
これは 1 の原始 n 乗根 ζn のガロア群の構造が 2 次拡大の繰り返しによって得られることの特徴付けとして得られる。
539:現代数学の系譜11 ガロア理論を読む
12/03/10 20:31:26.35
>>537
Kummerさん、乙です
>ここでやるわけないw
だよね
ま、よろしくね
540:132人目の素数さん
12/03/10 20:33:44.01
>>533
知ったかぶり乙w