面白い問題おしえて~な 十九問目at MATH
面白い問題おしえて~な 十九問目 - 暇つぶし2ch81:132人目の素数さん
12/01/08 14:56:53.58
>>80
たしかにそれは証明が必要な内容ですね
例えばこんなの

sinθ,cosθが共に有理数であり,それらを分母が正の既約分数で表すと
sinθ=b/a,cosθ=c/aとなって,なおかつaが奇数であると仮定する。
そのとき,
sin(2θ)=2bc/(a^2),cos(2θ)=(2c^2-a^2)/(a^2) …(*)
であり,aとb,aとcが互いに素であることから
2bcとa^2,2c^2-a^2とa^2も互いに素。
よって,(*)はsin(2θ),cos(2θ)を分母が正の既約分数で表したものとなる。

これを利用すると,sinθ=3/5のとき,
sin((2^k)θ)(k=0,1,2,…)を分母が正の既約分数で表した時の分母は
5^(2^k)となるため,数列{sin(nθ)}(n=1,2,…)の中には,
可算無限個の異なる数が出現することになる。

もし,2π/θが有理数なら,上記と矛盾するので,2π/θは無理数。



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch