11/07/23 09:12:44.58
>>65 それじゃ、ヘロンの公式はS=√s(s-a)(s-b)(s-c)でも、√(a+b+c)(s-a)(s-b)(s-c)/√2でもいいと言うのか?
「省略されたかけ算は優先的に」等というのは、教科書やノートしか前提にしていない時代の話。
つまり、十分の空白と、文字の位置情報だけで、「ひとかたまり」を意識させられる場合の話。
ネットでは、空白の大きさや文字の上付き、下付きなど、微妙な付加的視覚情報を追加することは、
TeXなどの特殊な記法を用いない限りできない。
そこで、簡易的だが、正確に情報を伝えるために、括弧の補完というルールが定着している。
ネットが登場したのは、教科書やノートしか無かった時代の後。
つまり、ネットの登場以降、ルールのオーバーライトが行われている。
「省略されたかけ算は優先的に」というのは、非ネット、あるいは、ネット上でも、混乱が生じない
場合にのみ適用して良いルールに成り下がっている。この現実をいい加減受け入れろ。
「√」だって、(混乱が生じない場合は除いて)どこまでがルートの範囲内か明確に示す必要がある。
だから、ヘロンの公式はS=√(s(s-a)(s-b)(s-c))と書かなければならない。
もちろん、教科書やノートではルートの横棒を(s-c)まで伸ばせばよく、外側の括弧が書かれないのが普通。