不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch775:132人目の素数さん
11/11/30 23:51:09.00
>>774

(64_1)
(1) sgn(a),   x = |a|・tanθ とおく。
(2) 部分分数に分けて
 f(x)f(t-x) = (1/2π)f(t/2){(1/2 + x/t)f(x) + (1/2 + (t-x)/t)f(t-x)}
 xf(x) は奇関数だから、積分すれば0.
 (t-x)f(t-x) も同様。
 ∴ (1/2π)f(t/2)∫(-∞,∞) {f(x) + f(t-x)}/2 dx = (1/2π)f(t/2),

66-5
問題1.
 (左辺) - (右辺) = (4/5)(x-y)^2 + (4/5)(x+y)(z-x-y) + (z-x-y)^2 ≧0,
 z = x+y+Z (Z≧0) を与式に代入する。

問題2.
 (与式) > ∫[0,1] (x^2)e^(-x) dx
   = [ -(x^2 +2x +2)e^(-x) ](x=0,1)
   = 2 - (5/e) = 0.160603

 (与式) < ∫[0,1] (x^2)・e^(-x^3) dx
   = [ -(1/3)e^(-x^3) ](x=0,1)
   = (1/3)(1 - 1/e) = 0.210707
(真値は (1/4)(√π)erf(1) - 1/(2e) = 0.189472345820492...)

67-2
(1) f(x) = (x+1/x)^2 は下に凸だから
 (a + 1/a)^2 + (b + 1/b)^2 + (c + 1/c)^2
  = f(a) + f(b) + f(c)
  ≧ 3f((a+b+c)/3)   (← 下に凸)
  = 3f(1/3) = 3(10/3)^2 = 100/3,


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch