不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch725:132人目の素数さん
11/11/06 23:47:08.21
生姜ねぇ...

>>699
いつものように
 f(x,y,z) = x^4 + y^4 + z^4 -12(xy+yz+zx) + 33
とくおく。

 f(x,y,z) - f(x, √(yz), √(yz)) = (y^2 -z^2)^2 -12x(√y -√z)^2
 = (√y -√z)^2 {(y+z)^2・(√y +√z)^2 - 12x}
 ≧ (√y -√z)^2 {(4yz)(4√yz) - 12x}
 = (√y -√z)^2 {16/(x^1.5) - 12x}   (← yz=1/x)

ところで f(x,y,z) は対称式だから x≦y,z としてもよい。
∴ x ≦ 1,
∴ 16/(x^1.5) - 12x > 0,
∴ f(x,y,z) ≧ f(x, 1/√x, √x),  (x≦1)

また
 x^2・f(x, 1/√x, 1/√x) = x^6 -24x^2.5 +33x^2 -12x +2
 = (√x - 1)^2 (x^5 +2x^4.5 +3x^4 +4x^3.5 +5x^3 +6x^2.5 +7x^2 -16x^1.5 -6x +4√x +2)
 = (√x - 1)^2 g(x)
 ≧ 0,

∵ g(x) ≧ g(0.4811730855931836) = 0.258670936041927

なお、x = 0.0394556281276082 に極大がある。(2.44552474861856)



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch