11/08/28 22:08:28.25
>>570
f(x,y,z) = (Ax^2 + By^2 + Cz^2 + Pyz + Qzx + Rxy)^2 + cyclic. + K '{xxyy+yyzz+zzxx-xyz(x+y+z)}
とおいて、係数 P,Q,R を求めよう。 ここに
K ' = K - P^2 - Q^2 - R^2 - 2(AB+BC+CA),
まづ
P + Q + R = - (A+B+C),
CP + AQ + BR = I/2,
BP + CQ + AR = J/2,
より
AP + BQ + CR = -(I+J)/2 -(A+B+C)^2,
クラメルの公式より
P = {I(B-A) + J(C-A) + 2(A+B+C)(BC-AA)}/D,
Q = {I(C-B) + J(A-B) + 2(A+B+C)(CA-BB)}/D,
R = {I(A-C) + J(B-C) + 2(A+B+C)(AB-CC)}/D,
ここに
D = 2(A^2 + B^2 + C^2 -AB -BC -CA) = (A-B)^2 + (B-C)^2 + (C-A)^2 ≧ 0,
P^2 + Q^2 + R^2 = (A+B+C)^2 + {(II+IJ+JJ) + 2(I+J)(A+B+C)^2 + 4(AB+BC+CA)(A+B+C)^2}/D,
PQ + QR + RP = -(1/2){(II+IJ+JJ) + 2(I+J)(A+B+C)^2 + 4(AB+BC+CA)(A+B+C)^2}/D,
これを使えば K ' を計算できる。
K '≧0 なら平方和になる。そのためには、|A+B+C| がなるべく小さくなるように符号をとるとよい。