不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch571:132人目の素数さん
11/08/28 22:08:28.25
>>570

f(x,y,z) = (Ax^2 + By^2 + Cz^2 + Pyz + Qzx + Rxy)^2 + cyclic. + K '{xxyy+yyzz+zzxx-xyz(x+y+z)}

とおいて、係数 P,Q,R を求めよう。 ここに
 K ' = K - P^2 - Q^2 - R^2 - 2(AB+BC+CA),

まづ
 P + Q + R = - (A+B+C),
 CP + AQ + BR = I/2,
 BP + CQ + AR = J/2,
より
 AP + BQ + CR = -(I+J)/2 -(A+B+C)^2,
クラメルの公式より
 P = {I(B-A) + J(C-A) + 2(A+B+C)(BC-AA)}/D,
 Q = {I(C-B) + J(A-B) + 2(A+B+C)(CA-BB)}/D,
 R = {I(A-C) + J(B-C) + 2(A+B+C)(AB-CC)}/D,
ここに
 D = 2(A^2 + B^2 + C^2 -AB -BC -CA) = (A-B)^2 + (B-C)^2 + (C-A)^2 ≧ 0,

 P^2 + Q^2 + R^2 = (A+B+C)^2 + {(II+IJ+JJ) + 2(I+J)(A+B+C)^2 + 4(AB+BC+CA)(A+B+C)^2}/D,

 PQ + QR + RP = -(1/2){(II+IJ+JJ) + 2(I+J)(A+B+C)^2 + 4(AB+BC+CA)(A+B+C)^2}/D,

これを使えば K ' を計算できる。

 K '≧0 なら平方和になる。そのためには、|A+B+C| がなるべく小さくなるように符号をとるとよい。



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch