11/08/21 05:37:23.73
>>514
【問題1】
z = x + y + Z' (Z'≧0) を代入して整理する。
(左辺) - (右辺) = (4/5)(x-y)^2 + (4/5)(x+y)Z' + (Z')^2 ≧ 0,
等号成立は (x,y,z) = (1,1,2) のとき。
【問題2】
(左) e^(-x^2) = (1/e)e^(1-x^2) > (1/e)(2-x^2), より
I > (1/e)∫[0,1] (x^2)(2-x^2)dx
= (1/e) [(2/3)x^3 -(1/5)x^5 ](x=0,1)
= 7/(15e)
= 0.171677
(右) x^2 > x^3 より
I < ∫[0,1] (x^2)e^(-x^3) dx
= (1/3)[ -e^(-x^3) ](x=0,1)
= (1/3)(1 - 1/e)
= 0.210706852
または 相加・相乗平均より
x^2 < (1/3)x + (3/4)x^3,
I < ∫[0,1] {(1/3)x + (3/4)x^3}・e^(-x^2) dx
= [ -(1/24)(13 + 9x^2)e^(-x^2) ](x=0,1)
= (1/24)(13 - 22/e)
= 0.204443845
【問題3】
f(x) = (x + 1/x)^2 は下に凸だから、Jensen で一発だが、
x=1/3 で接線を曳いて
f(x) = 100/9 - (160/3)(x -1/3) + (x^2 +54x +9)(x -1/3)^2
≧ 100/9 - (160/3)(x -1/3),
f(a) + f(b) + f(c) ≧ 100/3 - (160/3)(a+b+c-1) = 100/3,
でもよい。