不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch508:132人目の素数さん
11/08/16 05:09:19.68
>>498

 左辺を f(a,b,c,d) とおく。
ab<2 のとき
 f(a,b,c,d) - f(√(ab), √(ab),c,d)
 = (√a - √b)^2・{1/ab - 9/[(a+b+c+d)(2√ab +c +d)]}
 ≧ (√a - √b)^2・{1/ab - 9/(2√ab +c +d)^2}
 ≧ (√a - √b)^2・{1/ab - 9/(2√ab +2/√ab)^2}
 = (√a - √b)^2・{1/ab - 9ab/(4(ab+1)^2)}
 = (√a - √b)^2・(2-ab)(2+5ab)/{4ab(ab+1)^2}
 ≧ 0,
ここで c+d ≧ 2√cd = 2/√ab を使った。
a≧b≧c≧d とすると cd≦1
(a,b,c,d) が最小値ならば c=d に限る。
∴ bc = bd ≦1, 
∴ b=c=d≦1,
∴ (a,b,c,d) = (A^3, 1/A, 1/A, 1/A) ただし A≧1.
となって
 f(A^3,1/A,1/A,1/A) ≧ 25/6,  (A≧1)
に帰着する。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch