11/08/06 22:05:29.24
>>477
[B4371.]
1/{sin(π/14)}^2 + 1/{sin(3π/14)}^2 + 1/{cos(5π/7)}^2 = 24,
を示せ。
(略解)
(左辺) = 1/{cos(3π/7)}^2 + 1/{cos(2π/7)}^2 + 1/{cos(π/7)}^2
= 1/{cos(4π/7)}^2 + 1/{cos(2π/7)}^2 + 1/{cos(6π/7)}^2
= Σ[k=1,3] 1/{cos(2kπ/7)}^2,
{1 - T_7(x)}/(1-x) = 1 +7x -56x^3 +112x^5 -64x^7
= (1-x)(1 +4x -4x^2 -8x^3)^2,
cos(2kπ/7) (k=1,2,3) は 1 +4x -4x^2 -8x^3 = 0 の根。
1/cos(2kπ/7) (k=1,2,3) は y^3 +4y^2 -4y -8 = 0 の根。
Σ[k=1,2,3] 1/cos(2kπ/7) = -4,
Σ[k<L] 1/{cos(2kπ/7)cos(2Lπ/7)} = -4,
よって
Σ[k=1,3] 1/{cos(2kπ/7)}^2 = 4^2 -(-4)*2 = 24,