不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch492:132人目の素数さん
11/08/06 22:05:29.24
>>477

[B4371.]
 1/{sin(π/14)}^2 + 1/{sin(3π/14)}^2 + 1/{cos(5π/7)}^2 = 24,
を示せ。


(略解)
 (左辺) = 1/{cos(3π/7)}^2 + 1/{cos(2π/7)}^2 + 1/{cos(π/7)}^2
  = 1/{cos(4π/7)}^2 + 1/{cos(2π/7)}^2 + 1/{cos(6π/7)}^2
  = Σ[k=1,3] 1/{cos(2kπ/7)}^2,

 {1 - T_7(x)}/(1-x) = 1 +7x -56x^3 +112x^5 -64x^7
       = (1-x)(1 +4x -4x^2 -8x^3)^2,

 cos(2kπ/7)  (k=1,2,3) は 1 +4x -4x^2 -8x^3 = 0 の根。
 1/cos(2kπ/7) (k=1,2,3) は y^3 +4y^2 -4y -8 = 0 の根。

   Σ[k=1,2,3] 1/cos(2kπ/7) = -4,
   Σ[k<L] 1/{cos(2kπ/7)cos(2Lπ/7)} = -4,
よって
   Σ[k=1,3] 1/{cos(2kπ/7)}^2 = 4^2 -(-4)*2 = 24,


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch