不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch405:132人目の素数さん
11/07/01 12:35:17.26
>>350
abc = u とおく。
 (上式)^3 = (a+b)/2・(b+c)/2・(c+a)/2
 = {ab(a+b) +bc(b+c) +ca(c+a) +2u}/8
 ≧ (1/27){2ab(a+b) +2bc(b+c) +2ca(c+a) +15u} ← ※
 = (1/27){ab(a+b)/2 +bc(b+c)/2 +ca(c+a)/2
     +3(aab+u)/2 +3(abb+u)/2 +3(bbc+u)/2 +3(bcc+u)/2 +3(cca+u)/2 +3(caa+u)/2 +6u}
 ≧ (1/27){ab√(ab) +bc√(bc) +ca√(ca)
     +3ab√(ca) +3ab√(bc) +3bc√(ab) +3bc√(ac) +3ca√(bc) + 3ca√(ab) +6u}
 = (1/27){√(ab) +√(bc) +√(ca)}^3
 = (右辺)^3


※のところが、どうやって見つけたのか分かりませぬ…

ところで、√a、√b、√c の基本対称式 s、t、u を使って、
力任せに (左辺)^3-(右辺)^3 を計算しても出来ますか?

差をとって分母払った式は 27s^2t^2 - 54s^3u -62t^3 +108stu -27u^2 で、
これが0以上になるかが示せない…


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch