不等式への招待 第5章at MATH
不等式への招待 第5章 - 暇つぶし2ch346:132人目の素数さん
11/05/04 11:11:36.85
>>338 (中)
>>344
 e = 2.71828183 は使っていい?
 3^(1/3) ≦ e^(1/e),
の対数をとって
 log(3) ≦ 3/e = 1.10363832  (1.09861229)

〔解1〕
 (3/2)^3 = 3*(9/8) = 3*{1 + 1/(2^3)},
 3log(3/2) = log(3) + log(9/8) ≦ 3/e + 1/(2^3),
 log(3/2) ≦ 1/e + 1/(3*2^3) = 0.4095461

〔解2〕
 (3/2)^8 = (3^3)(243/256) = (3^3){1 - 13/(2^8)},
 8log(3/2) = 3log(3) + log(243/256) ≦ 9/e - 13/(2^8),
 log(3/2) ≦ (9/8e) - 13/(8*2^8) = 0.4075167

〔解3〕
 (3/2)^19 = (3^7)(531441/524288) = (3^7){1 + 7153/(2^19)},
 19log(3/2) = 7log(3) + log(531441/524288) ≦ 21/e + 7153/(2^19)
 log(3/2) ≦ (21/19e) + 7153/(19*2^19) = 0.40732166


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch