10/11/08 18:20:11
>>23
初等的証明
f(0)=0 より f(x)=∫_[0,x] f'(t) dt と書ける.
Schwarzの不等式とHo"lderの不等式より,
|f(x)|≦ ∫_[0,x] |f'(t) | dt
≦ { ∫_[0,x] 1^2 dt }^{1/2}・{∫_[0,x] |f' (t)|^2 dt}^{1/2}.
両辺自乗すれば,
|f(x)|^2 ≦ x ∫_[0,x] |f' (t)|^2 dt.
よって,x について 0 →1まで積分すれば,
∫_[0,1] |f(x)|^2 dx ≦ ∫_[0,1] x { ∫_[0,x] |f' (t)|^2 dt } dx.
ここで、右辺を部分積分すれば,
右辺 = [ x^2/2・∫_[0,x] |f' (t)|^2 dt ]_[x=0]^1 - ∫_[0,1] x^2/2・|f' (x)|^2 dx
= 1/2 ・∫_[0,1] |f' (t)|^2 dt - - ∫_[0,1] x^2/2・|f' (x)|^2 dx
= 1/2 ・∫_[0,1] (1-x^2) |f' (x)|^2 dx
≦1/2 ・∫_[0,1] |f' (x)|^2 dx
≦∫_[0,1] |f' (x)|^2 dx
よって、
∫_[0,1] |f(x)|^2 dx ≦ ∫_[0,1] |f' (x)|^2 dx
が証明できた。