11/01/31 20:10:22
>>119
> 実の対称マトリクスについては同時対角は可能ではないのですか?
違います。
実際、AとBが同時対角化されたとします。
つまり、ある1つの直交行列 T が存在して、T^t A T, T^t B T が対角行列になる。
対角行列同士は交換可能なので、T^t A T と T^t B T は交換可能です。
つまり、
(T^t A T)・(T^t B T) = (T^t B T)・(T^t A T)
が成り立ちますが、Tは直交行列なので T^t T = Eより、
T^t AB T = T^t BA T
つまり,AB=BA となります。
しかし、任意の2つの正定値対称行列は交換可能とは限らないので、これは矛盾です。