10/09/18 22:56:14
>>19
このままの式では不等式で証明できないっ!アッー!
ここで、直線BC上にBA':A'C=α:(1-α)となるような点A'を考える。
点A'が頂点Aからの垂線の足である場合、
α=(a^2+b^2-c^2)/(2 a^2)、1-α=(a^2-b^2+c^2)/(2 a^2)
点A'が頂点Aからの角の二等分線の足である場合、
α=b/(b+c)、1-α=c/(b+c)
点A'が頂点Aからの中線の足である場合、
α=1/2、1-α=1/2
上記より、b≧cだけを用いても、
(a^2+b^2-c^2)/(2 a^2)≧b/(b+c)≧1/2(三角不等式b+c≧aから言える)、
同様にもしくは、(a^2-b^2+c^2)/(2 a^2)≦c/(b+c)≦1/2であること
もふまえて、線分AA'が√[b^2 (1-α) + c^2 α - a^2 α (1-α)]
= √[a^2 (α - (a^2+b^2-c^2)/(2 a^2))^2 + (2 v / a)^2] と書けることから、
h_a ≦ d_a ≦ g_a が成り立つと証明できる。
よって、b≧cの任意の三角形ABCで、
√[(a+b+c)(-a+b+c)(a-b+c)(a+b-c)] / (2 a) ≦
√[bc(a+b+c)(-a+b+c)] / (b + c) ≦ √[2 (b^2 + c^2) - a^2] / 2
が成り立つ。QED