代数学・幾何学・解析学スレッドat MATH
代数学・幾何学・解析学スレッド - 暇つぶし2ch521:132人目の素数さん
11/09/04 14:02:44.59
>>520
f(x) = exp(-x^2) * ∫[t=0~x] exp(t^2) dt
変数変換を使うと
s = x^2-tx  ds = -xdt  t = x-(s/x)  t^2-x^2 = (s^2/x^2) - 2s
f(x) = (1/x) * ∫[s=0~x^2] exp(-2s)exp(s^2/x^2) ds
Taylor の定理を使うと (y = s^2 / x^2  Rn : [0,1]→R)
exp(y) = (Rn(y)y^n)/n! + Σ[k=0~n-1] (y^k) / k!  1≦Rn(y)≦e (y=0~1)

関数 g[k](s) と数列 a[k] と関数 p(x) を以下のように定義する
g[k](s) = s^(2k) * exp(-2s) / k!   a[k]=∫[s=0~∞] g[k](s) ds
p(x) = Σ[k=0~n-1] x^(-1-2k) * (∫[s=0~∞] g[k](s) ds) = Σ[k] a[k] * x^(-1-2k)
f(x) = Σ[k=0~n-1] x^(-1-2k) * (∫[s=0~x^2] g[k](s) ds)
    + x^(-1-2n) * ∫[s=0~x^2] Rn(s^2/x^2) * g[n](s) ds

k=0~n に対して x が十分大きければ g[k](s) ≦ exp(-s) * (x^(2k) * exp(-x) / k!)
よって x が十分大きい所で以下の不等式が成り立つ
x^(2n) * |p(x)-f(x)| ≦ Σ[k=0~n-1] ( x^(2(n-k)-1) * ∫[s=x^2~∞] g[k](s) ds )
+ (1/x) * ∫[s=0~x^2] Rn(s^2/x^2) * g[n](s) ds
≦ Σ[k=0~n-1] ( x^(2n-1) * exp(-x) * (1/k!) *∫[s=x^2~∞] exp(-s) ds )
+ (e/x) * ∫[s=0~∞] g[n](s) ds
= Σ[k=0~n-1] ( x^(2n-1) * exp(-x-x^2) * (1/k!) ) + a[n] * (e/x)
最後の辺は 0 に収束するので lim[x→∞] (p(x)-f(x)) / x^(-2n) = 0

∫[s=0~∞] s^n * exp(-2s) ds = (n/2) * ∫[0~∞] s^(n-1) * exp(-2s) ds
→ ∫[s=0~∞] s^n * exp(-2s) ds = n! / 2^(n+1)
部分積分を繰り返せば上記の結果が得られ以下のように展開出来る
a[k] = (1/k!) * ∫[s=0~∞] s^(2k) * exp(-2s) ds = (2k)! / (k! * 2^(2k+1))
p(x) = Σ[k=0~n-1] a[k] * x^(-1-2k)
f(x) = p(x) + o(1/x^(2n))


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch