代数学・幾何学・解析学スレッドat MATH代数学・幾何学・解析学スレッド - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト450:132人目の素数さん 11/05/17 23:26:36.40 >任意の2元について、ab≠aが成り立つ これどうやって証明するの? 451:132人目の素数さん 11/05/17 23:34:27.69 零因子なんて考えて何の意味があるの。 452:132人目の素数さん 11/05/17 23:37:21.33 ひょっとして、 ab=a と仮定すると b=1 となって、単位元を持たないことに矛盾するから とでも言いたいのではなかろうな 453:132人目の素数さん 11/05/17 23:45:33.72 それだとa≠0を仮定しないとならない。 454:132人目の素数さん 11/05/17 23:50:39.19 整数を成分とする2x2行列全体のうち、第2列が偶数になるもの全体を考えると、 単位元を持たない非可換の部分環になる、 a 2b c 2d ←こんなもの全体 ここでXとして 1 0 0 0 Yとして 1 0 c 2d とすると, c dが何でも XY=Xだな。 455:132人目の素数さん 11/05/17 23:52:21.48 第3行の成分がすべて0の3x3行列の成す環は単位元を持たない Aを左上の2x2部分は任意、他は0の行列 Bを左上の2x2部分は単位行列、他は0の行列 こうすればAB=Aが成り立つ 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch