10/12/27 03:48:01
>>346
要約すれば、もとの解空間S^1の他に解空間S^2が存在したとしてそれを構成し、
或る基底(c,±d)∈Xがその解空間S^2∈Yとは異なる或る解空間S^3∈Yに属する場合
と
任意の基底(c,±d)∈Xがそれによって構成される解空間S^2∈Yとは異なるどの解空間S^3∈Yにも属さない場合
とで場合分けしてそれぞれ矛盾を導くとなる。
前者を要約すると、S^2とS^3の基底に着目して、S^3の解行列を考えてつつS^2=S^3を導いてS^2≠S^3に反することをいい矛盾を導く。
後者を要約すると、S^1の基底について(a,b)=(a,-b)を示して矛盾を導く。
重要なのは前者の方だ。
>>356や>>357でもかなり大雑把だ。