代数学・幾何学・解析学スレッドat MATH
代数学・幾何学・解析学スレッド - 暇つぶし2ch334:132人目の素数さん
10/12/22 21:07:00
>>333
解(a,b)は(c,±d)、(1,0)のどれとも違うんだから、一般解が
B^n(c,d)、自然数nは任意、B(c,-d)=(1,0)、(c,-d)
の形で表わされることから、解(a,b)がその解空間に入るとすれば、
(a,b)=B^m(c,d)は必然的にいえる。
一方、入っていなければ2つの解空間
A^n(a,b)、自然数nは任意、A(a,-b)=(1,0)、(a,-b)

B^n(c,d)、自然数nは任意、B(c,-d)=(1,0)、(c,-d)
は違うがA(a,-b)=B(c,-d)
符号を考えていいかえればA(a,b)=B(c,d)
つまり(a,b)=A{-1}B(c,d)は成り立つ。
ここでA{-1}BをB(本当はCでも何でもいい)で置き換えれば
(a,b)=B(c,d)が得られる。
これはいわんとした主張(a,b)=B^m(c,d)に一致する。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch