16/08/18 15:43:08.07 7GnJQiSP.net
>>488
まだ細々やってます(汗
Eigenの導入と、少しづつ進んでいくC++技術のおかげで、前よりは試行の
スピードはアップしていますが、なかなか成果は出ません。まだ、色々な
パターンを試しながらディープラーニングって何ぞやを体感しているところ
なんだと思います。
少なくとも「簡単に凄い事ができそう」という幻想は捨てる事ができました(汗
ボードゲームがターン制なら、基本はmin-Maxになると思います。
まずは、盤面の状態に(恣意的で構いません)点をつける評価関数作るところ
から始めたらどうでしょう?
次のステップで評価関数に統計(線形回帰)を持ち込むと、ディープラーニング
じゃなくても、プレイ譜がたくさん必要になります。
オセロの場合は、Buroさんという先人が、実用レベルの評価関数が線形回帰
で作れる事を示してくれています。
僕がディープラーニングを適用しようと思っているのは、ただの思いつきでして。
場合によっては、より軽くて正確評価関数が作れるかと思いましたが、実際に
始めてみると、なかなか評価関数として機能してくれないし、仮にできたとしても
重いものになっちゃいそうという感じです。