09/07/07 19:09:15
「電子は常に粒子、電子の波動関数は粒子の振舞いを記述している」といったところで、
実は、その記述自体が、あからさまに波を記述する形式をしてて、
しかも、粒子性が現れるのが観測時のみで、
さらには、その観測によってそれまでの状態が破壊されているんだから、
否定こそされないが、他と区別できるような現実的な意味を持たないな。
102:ご冗談でしょう?名無しさん
09/07/07 19:13:03
>>99
>どれかが間違っている証明など不可能だろうよ。
観測していないときに、1個の電子の質量や電荷が局在していない、というのは間違い
であることは、観測に伴う瞬間的な収縮が相対論に反する、という理由で証明できるな。
103:ご冗談でしょう?名無しさん
09/07/07 19:20:06
>>101
>しかも、粒子性が現れるのが観測時のみで、
粒子の不確定な位置が観測により確定するだけの話。
で、これを「粒子性が現れる」とか言ってるから
いつまでたっても、「電子」と「電子の波動関数」の区別がつかない。
104:ご冗談でしょう?名無しさん
09/07/07 19:35:46
>>100
>>「収縮」するのは、粒子の位置の「不確定性」。
>とは違う、という主張かw
お前さんのいう不確定性は曖昧過ぎて何もいっていないのと同じ。
粒子は常にどこか一カ所に「だけ」存在しているが、
それがどこかなのか人間の知識不足でわからないだけ
という意味ならNoだ。
ちゃんと定義を明確にしろ。
>しかして、波動関数が空間にプカプカ漂っている、みたいに妄想してるのか。
アホか。観測していないときの話なのに、どんな古典的なイメージも通用しないだろ。
それがわからんのか?
105:ご冗談でしょう?名無しさん
09/07/07 19:39:00
>>100
>そんな言い方は物理板では、不可能。オカルト板に逝け。
いくら感情的にきめつけて罵っても駄目。
これは上の>81で紹介があった
「量子力学(1)」のP.74の記述を調べて引用しただけ。
それなのに物理板では不可能とか、オカルト板に逝けとか、えらそうにw
著者は名前くらいは訊いたことあるだろ?
106:ご冗談でしょう?名無しさん
09/07/07 23:51:02
>>105
江沢センセのその本のP.73~74にかけての説明は明らかに誤りだろ。
曰く
粒子であればシングルスリットの結果を足し合わせても干渉するはずだ。
しかし実験してみると干渉しない。
だから粒子ではない。
干渉しないのは、シングルスリットだからですよね、センセ
と突っ込みたくなるなw
107:ご冗談でしょう?名無しさん
09/07/07 23:59:20
>>104
>粒子は常にどこか一カ所に「だけ」存在しているが、
>それがどこかなのか人間の知識不足でわからないだけ
>という意味ならNoだ。
波動関数を規格化しておかなければならないのは、電子1個に注目しているので、
その電子はこの空間のどこかにいるはずだから、その確率は1である、から。
>観測していないときの話なのに、どんな古典的なイメージも通用しないだろ。
やはり、波動関数は脳外にある、と妄想しているわけだな。
108:ご冗談でしょう?名無しさん
09/07/08 07:27:44
>>102
>観測に伴う瞬間的な収縮が相対論に反する
>>43の
>波動関数は振舞いを記述する脳内の純粋な思弁
もしたとえ質量が広がった状態と記述される波動関数でも
脳内だったら相対論は関係ないと思いますが、どうなんでしょうか?
相対論は古典論の範囲で観測結果のみ有効なので、脳内思弁の波動関数
には言及できないと思いますが、根本的誤りですかね?
109:ご冗談でしょう?名無しさん
09/07/08 09:17:42
>>108
脳内であれば何でも許されるわけではない。
「1個の電子が妄想力により真っ二つに分裂して干渉してスクリーン上でまたひっつく」
こんな病像は受け入れられないだろ。
「波動関数の収縮」という言い方も、それが「状態の確定」のことだとわかっているから
セーフなわけで、質量や電荷が収縮するような物理的な現象のことであれば、即アウト。
110:ご冗談でしょう?名無しさん
09/07/08 11:04:54
>>106
>江沢センセのその本のP.73~74にかけての説明は明らかに誤りだろ。
いいや。別に問題ないだろうよ。
君がどれだけ偉い先生か知らないけど、君の主張と違うだけ。
粒子、すなわち局所性(一時には一カ所だけに存在する)をもつものであれば、
その粒子が右の穴を通過したときに、離れた位置にある左の穴の影響を受ける理由がない。
左の穴との相互作用を許す何からの「場」がない限りはね。
局所性があるから粒子だと言えるのに、それに反した
いわゆる「波」のような局所性のない波動関数を使用しないと
現実の振舞いが計算できないことを指摘しているんだよ。
あるときには局所性が否定されているのに、そのときも粒子といえるのか?
ということだろ。
111:ご冗談でしょう?名無しさん
09/07/08 11:19:48
>>107
>>それがどこかなのか人間の知識不足でわからないだけ
>>という意味ならNoだ。
>
>波動関数を規格化しておかなければならないのは、電子1個に注目しているので、
>その電子はこの空間のどこかにいるはずだから、その確率は1である、から。
勘違いをしているようだが、規格化の話ではない。
観測されていないときのある状態cが、
固有状態aと固有状態bの線形結合で表されていて
観測を行えば、状態aか状態bどちらかしか得られないとする。
観測を行わないときにもその「粒子」は、人間が知らないだけで
状態aか状態bどちらか片方にあったと考えるのか?
それならば、noだといっているの!
君の規格化の話は、状態aと状態bを合わせれば、
その粒子は1個みつかり、他の状態はなかっただろうと言ってるだけ。
112:ご冗談でしょう?名無しさん
09/07/08 11:21:22
>>107
>>観測していないときの話なのに、どんな古典的なイメージも通用しないだろ。
>
>やはり、波動関数は脳外にある、と妄想しているわけだな。
観測していないときの量子状態を
古典的なイメージで描けると思う方がおかしい。
113:ご冗談でしょう?名無しさん
09/07/08 12:11:34
>>110
「シングルスリットで干渉しないのは、電子が粒子でないから」
匿名の2chにこんなレスがあれば、叩かれるのは必至だろw
>その粒子が右の穴を通過したときに、離れた位置にある左の穴の影響を受ける理由がない。
観測してないのに、そんなことが言えるのかな?
それは、量子の不確定性を発現させる機構の有無、つまり、
不確定性原理にはブラウン粒子のようにファンダメンタルなメカニズムが
あるのかないのかという未解決の問題と同根なんだが。
114:ご冗談でしょう?名無しさん
09/07/08 12:12:49
(つづき)
現時点で言えることは、不確定であることを受け入れれば、
波動関数で振舞いを記述できる、それだけのこと。
それは、
>>110
>いわゆる「波」のような局所性のない波動関数を使用しないと
>現実の振舞いが計算できないことを指摘しているんだよ。
波動関数が「干渉」するのは、どのような相互作用なのかを考えてみればよい。
具体的な物理的プロセスがあるわけではないことがわかるだろ。
つまり、波動関数では「干渉」を記述しているだけで、
なぜ干渉するのかは説明していない。
115:ご冗談でしょう?名無しさん
09/07/08 12:17:26
>>111
で、電子は空間の中に1個あるのは、確かなんだろ。
さらに、1個の電子の質量や電荷が何か広がった分布をしているのは、
相対論と相いれない。
これから、結論されるのは、
1個の電子は局在した状態でどこかにある
つまり、粒子として存在しているってことだ。
116:ご冗談でしょう?名無しさん
09/07/08 12:19:25
>>112
観測していないときの、1個の電子の質量や電荷がどうなっているか
ならば、イメージできるよな。
117:ご冗談でしょう?名無しさん
09/07/08 12:35:58
「電子は空間の中に1個あるのは、確か。」
↓
「さらに、1個の電子の質量や電荷が何か広がった分布をしているのは、
相対論と相いれない。」
↓
「これから結論されるのは、1個の電子は局在した状態でどこかにある
つまり、粒子として存在しているってこと。」
こいつは、量子論においても排中律が成り立つと思っている低脳カス野郎。w
118:ご冗談でしょう?名無しさん
09/07/08 13:00:02
反論できなくなるとファビョる低脳カス野郎。w
119:ご冗談でしょう?名無しさん
09/07/08 13:11:07
ちなみに、波動関数で記述する時には、情報が欠落してしまうことがあるから
注意しなくてはいけない。それは波動関数の確率振幅がゼロになることろ。
一見些細な問題のように思えるけど、実は、これがあるから、
観測していなければ何も言及できない
といった「解釈」をしないといけなくなる。
量子力学に解釈が必要なのは、宿命。波動関数が確率密度を表しているから。
120:ご冗談でしょう?名無しさん
09/07/08 18:30:23
>>113
>>>110
>「シングルスリットで干渉しないのは、電子が粒子でないから」
>匿名の2chにこんなレスがあれば、叩かれるのは必至だろw
そんな要約をしているようでは、
干渉というものがまったく分かっていませんね。
古典力学からやり直した方がいい。叩かれるべきはあなたの要約です。
干渉というものを、ご存知でないらしいので説明しますが、
(スリット幅が波長に対して調整されてなけば、)
波であってもシングルスリットでは干渉しないんですよ。
だが、波なら、波長にマッチした間隔のダブルスリットにすると干渉を起こすんですよ。
こんなことは、粒子の局所性を考えると、
となりの穴と相互作用する特別な「場」でも粒子では起きない。
要約するときにダブルスリットの方の記述を落とすとは、
本当に古典的な干渉すら分かっていなかったんですね。
もう少し分かっている人かと思ってましたが、中学生の方ですか?
121:ご冗談でしょう?名無しさん
09/07/08 18:41:58
>>120
ダブルスリットの片方を閉じてシングルスリットにして実験した結果と
閉じるスリットを入れ替えて実験した結果を
足し合わせると、粒子ならば干渉縞になるはずだ。
干渉縞にならないのであれば、それは粒子ではないからだ。
という説明を鵜呑みにして2chでファビョるのも、また一興w
122:ご冗談でしょう?名無しさん
09/07/08 18:43:08
>>113
>>その粒子が右の穴を通過したときに、離れた位置にある左の穴の影響を受ける理由がない。
>
>観測してないのに、そんなことが言えるのかな?
>それは、量子の不確定性を発現させる機構の有無、つまり、
>不確定性原理にはブラウン粒子のようにファンダメンタルなメカニズムが
>あるのかないのかという未解決の問題と同根なんだが。
だから、いま複数の解釈があるんだってw
粒子の要件は、局所的な存在であること。
なのに、観測してないときには非局所的な性質を持つ波のように
数式化するしかない。
そこで、どうするか。
●粒子的な性質は位置に関連した観測時にみられるものとして、
非観測時には非局所的な性質をもった何かである、とするか、
●ブラウン粒子のようにファンダメンタルなメカニズムがあると想定するか。
後者の場合、波動関数の非局所性を粒子以外に担わせないとならない。
それこそがボーム解釈の量子ポテンシャルのアイデアでしょうが。
特別な「場」を仮定せずに、粒子の局所性を主張したら、
非局所性はどこに押し付けるつもりだったの?
123:ご冗談でしょう?名無しさん
09/07/08 18:52:28
>>114
>波動関数が「干渉」するのは、どのような相互作用なのかを考えてみればよい。
>具体的な物理的プロセスがあるわけではないことがわかるだろ。
>つまり、波動関数では「干渉」を記述しているだけで、
>なぜ干渉するのかは説明していない。
あのね。
波動関数で記述されるということは少なからず非局所性を持つということ、
干渉しようにも局所的な存在である粒子を主張するなら描像が合わない。
それを解決するための手段が量子ポテンシャル。
量子ポテンシャルのような非局所的な場を仮定せずに、
非局所的な波動関数で記述されているときにも局所的な存在(粒子)です。
と言っても何も説明したことにもならないし、実験的な根拠も皆無だね。
単に観測していない時をブラックボックス化して、
どうなっているか何も考えていないけど粒子だと思うといっているに過ぎない。
なら、他の解釈が成立する余地を認めるべきだよ。
気に入らないからってだけで、江沢洋先生の教科書をオカルト扱いしてたらDQNだろ。
子供じゃないんだからさ。
124:ご冗談でしょう?名無しさん
09/07/08 19:43:49
>>116
>観測していないときの、1個の電子の質量や電荷がどうなっているか
>ならば、イメージできるよな。
はあw?
あのさ、ボーム解釈で考えるの?
そうでないなら
観測していないときには波動関数でしか記述できないね。
波動関数で記述される状態の重合わせが古典的なイメージにハマるわけ無いだろ?
もしかして、波動関数で書く状態の重合わせを、
電荷自体が部分に分けられた液体みないな古典的イメージで考えているの?
量子状態は、古典的な粒子でも、古典的な波でもないよ。
で、質量のオブザーバルと位置のオブザーバブルがなんだって?
質問を明確化しなさいよ。
ボームの解釈なら量子ポテンシャルが存在するから、
粒子の位置の軌跡は>81の量子ポテンシャルの文献どおりになるだろ?
125:ご冗談でしょう?名無しさん
09/07/08 19:49:29
>>121
>ダブルスリットの片方を閉じてシングルスリットにして実験した結果と
>閉じるスリットを入れ替えて実験した結果を
>足し合わせると、粒子ならば干渉縞になるはずだ。
>干渉縞にならないのであれば、それは粒子ではないからだ。
>
>という説明を鵜呑みにして2chでファビョるのも、また一興w
そんな論理展開、江沢洋先生の教科書には書いてないぜ。
捏造するなよ。
ダブルスリットの両方を開いときに干渉するくだりを
読めなかったのか?
126:ご冗談でしょう?名無しさん
09/07/08 22:13:26
>>122-123
あのねぇ、波動関数で記述してるのは、電子の振舞い。
>粒子の要件は、局所的な存在であること。
>なのに、観測してないときには非局所的な性質を持つ波のように
>数式化するしかない。
質量や電荷が局在している粒子、の「振舞い」が非局所的でも全然問題ない。
まぁ、コイツは一生、「電子」と「電子の波動関数」区別がつかないんだろうな。
127:ご冗談でしょう?名無しさん
09/07/08 22:24:28
結局、
「広がってないなら、局在してるはずニダ!」
ってな発想だな。
この発想自体、古典論に執着した極めて浅い考え方ってことに、
気づいてないのが痛い。
やっぱり、低脳カス野郎の称号は奴(>>115)のもんだ。
128:ご冗談でしょう?名無しさん
09/07/08 22:55:16
で、広がってるのは何で、局在しているのは何なんだよ、低能カス野郎w
129:ご冗談でしょう?名無しさん
09/07/08 22:56:46
>>124
>観測していないときには波動関数でしか記述できないね。
さぁ、観測していないときの1個の電子の質量と電荷を波動関数で記述してみるんだ。
130:36
09/07/08 23:00:32
>>37-129
横から大変興味深く拝読いたしました。
西洋哲学を専攻した文系人間から見ても非常に高度な議論ですね。
単なる「周回遅れ」は言いすぎでした。
こちらはバークリーなどを押さえて読んでいるつもりですが、もう少しお話を傍聴させて頂きます。
131:ご冗談でしょう?名無しさん
09/07/08 23:04:39
>>125
まぁ、興味のある人は、量子力学(I)のP.72の最後の6行とP.74の最初の7行を
読んで判断してくれ。ちなみにP.73はTonomuraの例の干渉「縞」の写真。
この実験は非常に良いのだが、そこから導いている結論がアレ。
132:ご冗談でしょう?名無しさん
09/07/09 00:01:16
シュレディンガー方程式は、
質量(と電荷)を持つ「粒子」の量子力学的な振舞いを記述する運動方程式。
波動関数はシュレディンガー方程式の解の関数。
だから、波動関数で議論できるのは、電子の力学的な振舞いであり、電子の性質ではない。
波動関数を解くときの大前提が「粒子」なわけだから、
「波動関数は非局所的だから、電子は粒子であるとはいえない」とかは、全く以てアホ。
133:ご冗談でしょう?名無しさん
09/07/09 00:06:04
水素原子の電子の波動関数は、質量mの質点、電荷-eの点電荷、つまり粒子の
シュレディンガー方程式を解いて求めている。
得られた固有状態はもちろん実験をよく説明する。
つまり、電子の質量や電荷は点で近似しても良いくらいに局在している、ということ。
波動関数に広がりがあるのは、電子が波になっているのでなく
電子の粒子としての位置が不確定だから。
で、波動関数が収縮するとは、電子が波から粒に変身したのではなく
観測により電子の位置が確定しただけ。
おそらく、波動関数が何か特別なモノ、と思い込んでいる>>37には
「電子」と「電子の波動関数」の区別がつかないのは、よくわかった。
134:ご冗談でしょう?名無しさん
09/07/09 00:15:53
結局、シュレディンガー方程式を解いたことのないようなコドモが
知ったかぶりして「電子は波であるとも粒であるともいえない」とか間違えてるだけ。
>>1向けの結論として
「電子は粒子」
「電子の(量子)力学的振舞いはシュレディンガー方程式で記述される」
「シュレディンガー方程式の解が波動関数と呼ばれている」
だと、難しいかな。
135:ご冗談でしょう?名無しさん
09/07/09 00:21:22
江沢センセは、初学者向けに「量子力学は古典力学とは違う」と強調したかったがための
勇み足だと、納得している。ソースはオレの脳内w
136:ご冗談でしょう?名無しさん
09/07/09 08:10:02
>>130
いえいえ、自分は痴呆大ですからアテにならないかも。
量子力学はミクロな系の力学的行動を扱う学問です。
だから電子であろうと、分子であろうと、C60であろうと
その系の内容構造にかかわらず量子力学の法則に従います。
素粒子は電子なら電子そのものを追求する学問ですので扱う分野が違うと
認識しています。
素粒子としての電子にもかかわらず量子力学では波動関数の非局所性があ
ります、でも確率解釈で、粒子性は担保されています。いままでこの問題
について論じられていますが、自分からみると高度というより非常に根本
的な問題に見えます。
137:ご冗談でしょう?名無しさん
09/07/09 08:29:57
波動関数だけみると空間的に広がったように見えるけど
空間に縛り付けられた規格化基底ベクトル(完全性)で展開しているとみると
粒子だと認識できます?
138:ご冗談でしょう?名無しさん
09/07/09 10:38:40
>>137
その基底ベクトルが互いに「正規直交」であるときに、
測定値がある値をとる確率などは計算できるだろうが、
複数の基底ベクトルの合成で状態が記述されている時点で、
粒子のもつ排他的局所性(ある時刻には、必ずある一点にあって他の場所にはない)を
かなぐり捨てているよね。
それでもまだ粒子と呼びつづけることに大した意味はないよなあ。
単に測定したら粒子として観測されるだろうくらいの意味しか
ないよね。
まあ、表式の仕方が変わっても数学的な構造が等価だなあ。
ただ、ボームの解釈は別だけどさ。
あれだと、重ね合わされているのは、
粒子ではなく、粒子のおおよその振舞いを決める量子ポテンシャルだからさ。
139:ご冗談でしょう?名無しさん
09/07/09 10:46:15
>>135
どこを強調するかは教科書次第だが、
江沢洋先生の教科書を初めから読むと、前書きからずっと
波動性と粒子性を意識されて書いているし、
そのへんの啓蒙書のいい加減な記述とは明らかに違う。
筆が滑ったと言うことではないだろうよ。
現実に江沢洋先生の解釈もメジャーな解釈の一つであるし、
実験事実で否定されるような点はないからね。
まあね、仮にも1995年の日本物理学会会長だ。
誤植以外に教科書で変なスキはつくらんと思うよ。
140:ご冗談でしょう?名無しさん
09/07/09 11:44:18
>複数の基底ベクトルの合成で状態が記述されている時点で、
>粒子のもつ排他的局所性(ある時刻には、必ずある一点にあって他の場所にはない)を
>かなぐり捨てているよね。
いまだに重ね合わせが理解できない低脳カス野郎。w
141:ご冗談でしょう?名無しさん
09/07/09 11:45:11
>>139は物理屋じゃないね
142:ご冗談でしょう?名無しさん
09/07/09 12:14:40
>>133
>水素原子の電子の波動関数は、質量mの質点、電荷-eの点電荷、つまり粒子の
>シュレディンガー方程式を解いて求めている。
>得られた固有状態はもちろん実験をよく説明する。
>つまり、電子の質量や電荷は点で近似しても良いくらいに局在している、ということ。
何を考えるときに「点で近似しても良いくらいに局在している」というのだろうか?
それを言わないと単なる印象操作にすぎない。
水素原子の電子軌道の広がりは、中心にある原子核の広がりより遥かに大きい。
水素原子の電子の波動関数を議論しているときにこれを「点で近似しても良い」とは言えない。
また、シュレディンガー方程式を立てるときには、
質量mの質点、電荷-eの点電荷など、つまり粒子としての性質から
一旦ハミルトニアンを構成し、それを一定のルールで波動関数に対する「演算子」に置き換え、
いわゆる「波」の形やエネルギーを形を計算している。
さらには、水素様原子のシュレディンガー方程式の解は、
ボーアの原子模型から大分離れてしまったものの
それでも式の形は3次元の波の複雑な「定在波」に近い形をしていて、
それが軌道の量子化をもたらす。
だから、水素原子の電子軌道の計算が、
電子が観測していないときにも粒子の局所性をもつ根拠にはならない
143:ご冗談でしょう?名無しさん
09/07/09 13:18:09
>>131
>まぁ、興味のある人は、量子力学(I)のP.72の最後の6行とP.74の最初の7行を
>読んで判断してくれ。ちなみにP.73はTonomuraの例の干渉「縞」の写真。
>この実験は非常に良いのだが、そこから導いている結論がアレ。
-------抜粋-------
”電子が来る確率"といったが、電子は常に粒子の姿でいて、それが確率
的に行動する、と考えるのでは具合が悪い。
なぜなら、電子が常に粒子の姿でいるとしたら、外村らの実験で個々の電
子はバイプリズムの右側を通るか、左側を通るかのどちらかに限る。電子が
2つに割れることはないから、両側を通ることはできない。
そうだとしたら、実験の前半の時間はバイプリズムの左側をブロックして
右側だけ電子を通し、後ろの半分の時間は反対に右側をブロックすることにし
ても、全体の時間を2倍にすれば同じことになるはずだ。
実験してみるとそれが違うのである。バイプリズムを片側ずつ通した実験
では、一つのスリットからの回折像を、スリットを少しだけずらして、2つ
重ねた形になる。それは2つのスリットを通した光の干渉縞とは全く違う。
こうして、電子が常に粒子の姿でいるとは考えられない。電子は、位置の
観測器に出会ったとき粒子として姿を現すとするほかはない。バイプリズムに
であったときには波として振舞うのであった。
-------抜粋終わり-----------
つまり、2重スリットのとき干渉縞が現れて、片側だけのときには現れない。
粒子の局所性が保たれてたら隣のスリットの有無に実験結果は影響されないはず
ということだな。
別におかしくはないじゃん。>121の要約がピントがずれているんでないか?
144:ご冗談でしょう?名無しさん
09/07/09 14:45:03
>>142
>水素原子の電子軌道の広がりは、中心にある原子核の広がりより遥かに大きい。
>水素原子の電子の波動関数を議論しているときにこれを「点で近似しても良い」とは言えない。
波動関数の広がり=電子そのものの広がり、という低脳カス野郎の見本だな。w
広がった波動関数: 電子の位置が不確定。
収縮した波動関数: 観測により電子の位置が確定。
145:ご冗談でしょう?名無しさん
09/07/09 14:57:35
>>143
絞ったレーザービームを片方のスリットに入射させても干渉縞にはならない。
>実験してみるとそれが違うのである。バイプリズムを片側ずつ通した実験
>では、一つのスリットからの回折像を、スリットを少しだけずらして、2つ
>重ねた形になる。それは2つのスリットを通した光の干渉縞とは全く違う。
つまり、これは波動とか粒子とかに依るのではなく、
ダブルスリットかシングルスリットかの違いのことしか言えない。
ダブルスリットの片方を通過すると干渉縞になるのなら、
シングルスリットの結果を別々に足し合わせても干渉するはず
>この発想自体、古典論に執着した極めて浅い考え方ってことに、
>気づいてないのが痛い。
146:ご冗談でしょう?名無しさん
09/07/09 15:08:21
>だから、水素原子の電子軌道の計算が、
>電子が観測していないときにも粒子の局所性をもつ根拠にはならない
1個の電子の質量や電荷が局在しているという根拠は、相対論。
147:ご冗談でしょう?名無しさん
09/07/09 15:22:28
>>144
>波動関数の広がり=電子そのものの広がり、という低脳カス野郎の見本だな。w
じゃなくて、
>つまり、電子の質量や電荷は点で近似しても良いくらいに局在している、ということ。
の根拠に全然なっていないということだろ。
粒子として測定された時のパラメータを
もとに波動関数を立てて波の形で計算しているだけだろ。
んで、観測していないときにも
「つまり、電子の質量や電荷は点で近似しても良いくらいに局在している」
なんて飛躍し過ぎ。
148:ご冗談でしょう?名無しさん
09/07/09 15:28:29
>>147
>>146
149:ご冗談でしょう?名無しさん
09/07/09 15:41:34
>>145
>つまり、これは波動とか粒子とかに依るのではなく、
>ダブルスリットかシングルスリットかの違いのことしか言えない。
>
>ダブルスリットの片方を通過すると干渉縞になるのなら、
>シングルスリットの結果を別々に足し合わせても干渉するはず
実際には、
波がシングルスリットを通過した場合の結果を
別々に求めて足し合わせても干渉しないし、
ダブルスリットを通過すると干渉する。
粒子と観測されたものに関しても、
途中を観測しないで実験すれば同じことが起きる。
そこがキモなんでしょう。
150:ご冗談でしょう?名無しさん
09/07/09 15:44:16
>>147
>粒子として測定された時のパラメータを
>もとに波動関数を立てて波の形で計算しているだけだろ。
失礼だが、シュレディンガー方程式を知らないね、君
啓蒙書レベルの内容しか知らない厨には
微分方程式は無理だよ
151:ご冗談でしょう?名無しさん
09/07/09 15:50:31
実際、量子ポテンシャルを想定しないなら
古典的な粒子でも、古典的な波でもないやね。
いつでも粒子ならその定義上、「場」のような力を及ぼすものがない限り
遠隔地の影響を受けずに局所的な振舞いをすることになるし、
逆に、いわゆる波なら、二つに分割してそれぞれを同時に検出できるはず。
どっちもできない。
そんな鵺のような(日常感覚からすれば)得体の知れないものの
どっちだと断言したところで、従来的な意味での「粒子」の要件も
「波動」の要件も満たさないわな。
観測していないときには数式上、波として非局所的に計算するしかない。
そんなときに観測した時と同様の粒子性をもった状況であるといっても
「局所的なものが非局所性を発揮してますが、局所的なものです」みたいな
アホな記述になるしかない、日常言語の描写力を越えているからね。
152:ご冗談でしょう?名無しさん
09/07/09 15:59:35
>>151のような啓蒙書レベルの厨が
「粒子の位置が不確定である」ことを「粒子は複数の場所に同時に存在する」と妄想する
のは、仕方のないことなんだ。
153:ご冗談でしょう?名無しさん
09/07/09 16:01:46
いつまでたっても確率分布がわからない低脳カス野郎。w
154:ご冗談でしょう?名無しさん
09/07/09 16:04:53
>>151
>観測していないときには数式上、波として非局所的に計算するしかない。
>そんなときに観測した時と同様の粒子性をもった状況であるといっても
観測していないときでもしたときでも電子はいつでも粒子なんですよ。
波動関数は粒子の内部構造を記述してるわけじゃないですよ。
155:ご冗談でしょう?名無しさん
09/07/09 16:14:58
>>149
波であっても干渉を示さない実験結果を持ち出してきて
「干渉しないのは粒子ではないからだ」と結論するのが、キモ
「ダブルスリットの片方を通過して干渉するなら、シングルスリットにして
片方ずつ通過させてから足し合わせても干渉するはずだ」
というのが古典論に執着した、キモ
156:ご冗談でしょう?名無しさん
09/07/09 16:28:39
だから、古典的な波でも古典的な粒子でもないやね。
波動関数にしたって波の形をしているけど、
「振幅」2乗すると観測したときにある測定値を与える確率に過ぎないし、
それ以上のことは何も数式には内在されていない。
位置と速度(というか運動量)が可換でないとか粒子としては奇妙な
性質をそのまま数式化してある。
おまけに、運動量を演算子化したときに波動関数にかかる微分演算子に
しているので、結果的に自由粒子は「平面波」の重ね合わせで記述する始末。
粒子描像はどこいった?という形式。
それでも強いて言えば、「平面波」の周到な重ね合わせで作った
「波束」の時間発展を考えれば
h->0の極限では、「波束」自体の運動が古典的な粒子の運動と一致する
対応原理がある
くらいかねえ。
157:ご冗談でしょう?名無しさん
09/07/09 17:10:01
波であることを否定するときには、古典的な波を考えて攻撃し、
観測していないときに粒子であることを否定するときには、
古典的な粒子を考えて攻撃する。
っていうんじゃ、どちらも正しいし、どちらも変だわな。
波動関数は、波だし、非局所的だし、干渉もするけど、
振幅の2乗は、慎重に言えば「もしも測定したらば見つかる確率」だし、
いわゆる状態そのものだからねえ。古典的な波の概念を越えている。
古典物理で実体視する物理量は演算子の方に押し付けられている。
158:ご冗談でしょう?名無しさん
09/07/09 17:12:11
で、波動関数の収縮にしても、
粒子の位置みたいな「観測結果」は光速を越えないんだよな。
Aという位置で見つかった後、次にBという位置で光速を越えて発見されるとかは起きない。
量子テレポーテーションの実験でも、何か意味のある情報すら
光速を越えて送ることは不可能だし。
たしかに、波動関数の収縮は光速を越えるかもしれないが、
光速を越えているのは質量でも粒子でもなんでもなくて
波動関数の広がりなんだよね。
物理量自体は波動関数にかかる演算子でしかないわけで。
状態が光速を越えるといっても...観測結果ベースで言うと
事前観測と事後観測で相対論を破ることはないように作ってはあるんだよなあ。
物理量を振幅にもつ古典的な波なら相対論に違反しているとしてチョンなんだか...
159:ご冗談でしょう?名無しさん
09/07/09 18:38:40
>だから、古典的な波でも古典的な粒子でもないやね。
だから
「電子は質量、電荷、スピンを持つ、量子力学的な粒子」
「量子力学的な粒子の振舞いはシュレディンガー方程式で記述される」
「シュレディンガー方程式の解は波動関数と呼ばれている」
以上
160:ご冗談でしょう?名無しさん
09/07/09 19:09:36
えー、だけど、それだとつまんないよ。
だって、ここでは誰も「古典的な波」だなんて主張していないからさあ。
その「量子力学的な粒子」って局所性に反した振舞いをするわけで、
「非局所性を発揮する局所的なもの」ってどういうこと?ってことになる。
だから、
「電子は、量子力学的な意味での波(質量、電荷、スピンをオブザーバルな演算子にできる)」
「量子力学的な波の振舞いはシュレディンガー方程式の解・波動関数で記述される」
「ただし、電子は測定項目に応じて、観測時には粒子として検出される」
「量子力学的な意味での波束は、古典極限で古典力学の描像と一致する。」
と実験的に区別がつかないじゃん。(古典的な波ならすぐに却下できるけどね)
もちろん、「量子力学的な意味での波」ってどうやって収縮して粒子になっているの?
ってことになる。
161:ご冗談でしょう?名無しさん
09/07/09 19:12:19
>>158
>たしかに、波動関数の収縮は光速を越えるかもしれないが、
>光速を越えているのは質量でも粒子でもなんでもなくて
>波動関数の広がりなんだよね。
まだ、こんなことをいってるのか
波動関数は空間に存在するわけではないから、「収縮が光速を越える」とかアホすぎ
脳内の純粋な思弁が「収縮する」と表現するのが、厨を混乱させるのか
不確定な状態が観測により確定するだけのこと
状態が確定した時に、それは「想定外」の状態でした、では力学にならない
どんな状態に確定しても全て「予想通り」と言えなければ、力学としては使えない
だから可能な状態を全て記述しておかないといけない
この記述が波動関数の重ね合わせ
162:ご冗談でしょう?名無しさん
09/07/09 19:22:57
>>160
>「ただし、電子は測定項目に応じて、観測時には粒子として検出される」
観測時に局在しているのであれば
観測していないときにも質量や電荷が局在していないと相対論に反する
だから電子は粒子
ただ古典粒子とは異なり力学的な振舞いに波動性がある
163:ご冗談でしょう?名無しさん
09/07/09 19:52:00
|ψA>は、いつ測定してもaが測定値になる固有状態かつ定常状態。
|ψB>は、いつ測定してもbが測定値になる固有状態かつ定常状態。
とする。(たとえば、位置の違いとか、経路の違いとか)
ここで、これらの状態が不確定になって、
|ψ>=c1|ψA> +c2 |ψB>
という量子状態になったとする。
測定の期待値は
<ψ|ψ> = c1^2 <ψA|ψA>+ c2^2 <ψB|ψB> +c1c2(<ψAψB><ψBψA>)
(<ψ|ψ> は|ψ|^2とも書くこともある。)
これが通常の量子力学のあつかい。
しかし、ここで、位置の違いとか、経路の違いとかで区別される状態だったので
粒子はいつでも一度に一カ所にしかいられない、と考えたとする。
つまり、いくら不確定といっても、それは人間が知らないだけで
実際の個々の実験では(c1=1, c2=0)か(c1=0, c2=1)であったと考えたとする。
ただその比率がわからないのだと。
個別には、
(c1=1, c2=0)なら、<ψ|ψ> = <ψA|ψA>
(c1=0, c2=1)なら、<ψ|ψ> = <ψB|ψB>
これを適当な割合で混ぜれば、何回も実験した時の期待値がでるはずだと....
こうすると、c1c2(<ψAψB><ψBψA>)の項(干渉項)が落ちてしまう。
つまり、不確定とは、人間の情報不足に起因する不確定ではないのだ。
164:ご冗談でしょう?名無しさん
09/07/09 20:01:38
>>162
>観測時に局在しているのであれば
>観測していないときにも質量や電荷が局在していないと相対論に反する
波動関数と測定値を結びつけるルールのせいで、
相対論に反する実験結果だけは出ないようになっている。
だから、振幅が物理量である古典的な波でもない限り、
破綻の尻尾を実験で示すことが出来ない。
つまり、証明不能なところが痛いね。
粒子でないとするほうにも似たような弱点があるけど。
165:ご冗談でしょう?名無しさん
09/07/09 20:10:14
状態の重ね合わせは、波動関数の重ね合わせであって、
波動関数の二乗の重ね合わせではないから、
実はただ網羅的に可能な状態を全てをリストアップしただけとは言えず、
そのために予想値に干渉項ができるんだな。
166:ご冗談でしょう?名無しさん
09/07/09 20:55:56
>>163
>(c1=1, c2=0)なら、<ψ|ψ> = <ψA|ψA>
>(c1=0, c2=1)なら、<ψ|ψ> = <ψB|ψB>
>これを適当な割合で混ぜれば、何回も実験した時の期待値がでるはずだと....
これが、>>119に書いてあることだな。
c2=0のときはBの情報が欠落する記述しかできない。
つまり、bが測定値になる固有状態があったとしても
それは、bが測定値になる固有状態が無い、のと同じになってしまう。
これでは、干渉項が出てくるわけはない。
だから、「解釈」が必要になり、粒子はいつでも一度に一カ所にいるとはいえない
という、コペンハーゲン解釈になる。
記述の仕方に限界があるので、「解釈」が必須になる。
167:ご冗談でしょう?名無しさん
09/07/09 21:02:21
>>164
>波動関数と測定値を結びつけるルールのせいで、
なんだ、そのご都合主義のルール?
>相対論に反する実験結果だけは出ないようになっている。
波動関数は空間に存在するわけではない。
脳内の純粋な思弁が相対論に反するわけがない。
コイツだけはガチで、低脳カス野郎。w
168:ご冗談でしょう?名無しさん
09/07/09 21:17:00
>>166
状態の記述に限界があるから
粒子はいつでも一度に一カ所にいるとも、いないとも言えない
つまり
観測してないときは何も言えない
というコペンハーゲン解釈になる、だな。
169:ご冗談でしょう?名無しさん
09/07/09 21:26:21
1個の電子の質量や電荷が局在して、粒子になっているのは
状態とか波動関数とかとは別の話。
1個の電子は観測されるときは、いつでも質量、電荷が局在した粒子。
観測していないときに、局在していないと仮定すると
観測により質量や電荷が瞬時に局在化することになり、
これは相対論に反する。
よって、仮定は否定され、
観測していないときにも局在していると結論される。
リア厨にもわかる背理法だな。
170:痴呆大
09/07/10 08:41:14
>>163
不確定というのは「観測あるなし関係なく局在説」の場合は人間の情報不足に
起因する。ですね。
>c2=0のときはBの情報が欠落する記述しかできない。
c2=0というのはψからみた場合ψAのみでbの情報がない。
というところまではわかりますが、
そのことから「解釈」が必要な理由が今一つわかりません。
とくにその局在説で
>bが測定値になる固有状態があった(ψB≠0)としても
のところ。
171:ご冗談でしょう?名無しさん
09/07/10 09:29:08
>>170
>不確定というのは「観測あるなし関係なく局在説」の場合は人間の情報不足に
>起因する。ですね。
全く違う。
不確定とは、「粒子」の位置が非局所的になること。
質量や電荷が局在して「粒子」なっているのとは違う。
観測により、不確定であった粒子の位置が確定する。
これと
観測の有無に依らず、質量や電荷が「粒子」の位置に局在している。
これは、別。
172:ご冗談でしょう?名無しさん
09/07/10 09:48:58
状態の記述の限界とは
|ψ>=c1|ψA> +c2 |ψB>
で、|ψB>=0であれば |ψ>=c1|ψA> 。
しかし、|ψB>≠0であっても、c2=0であれば |ψ>=c1|ψA>
となり、|ψB>=0の場合と同じで区別できなくなること。
当たり前のことだが、|ψ>に|ψB>の情報を取り込むことができない場合は、
情報が欠落している記述となり、それに関しては何も言及できない。
だから、
観測してないときは何も言えない
という、コペンハーゲン解釈になる。
173:ご冗談でしょう?名無しさん
09/07/10 10:05:13
c2=0だと、|ψB>≠0の場合でも|ψB>=0と同じ記述になってしまうから、
干渉しているときに、c2=0である、とは言えない。
状態の記述に限界があるために、c2=0にできないという意味。
これは、物理的にc2=0ではない、ということではなく
記述の限界に起因することなので、「解釈」になる。
174:ご冗談でしょう?名無しさん
09/07/10 12:00:25
えーと、|ψB>=0は変じゃない?
そもそも量子1個分の状態ベクトルを考えているんだから、
|ψA>は、
観測すれば地点aに必ず見つかる状態であり、bにはいない状態、
|ψB>は、観測すれば地点aで必ず見つかり、aにはいない状態、
というのが定義でしょう。
つまり、|ψA>は、aとbの情報がセット。|ψB>も同様。
状態の重ね合わせ |ψ>=1/√2 |ψA> + 1/√2 |ψB> は、
別に、電子が半個がaにいて、同時に残り半個がbにいるわけではない。
電子がaにいる状態が半分、電子がbにいる状態が半分の混合状態なんでしょ。
日本語にすると微妙なうえに、後者は我々の日常感覚を超える状態だけど。
「電子が半分ずつの状態」だと古典的な波になり、
「状態が半分ずつの新しい状態」なら量子的な波でしょう。
だが、>163で言われているように、その「新しい状態」についても
「粒子はいつでも一度にある一カ所にしかいられない」&
「不確定とは、単に人間の情報不足に起因するもので、現実は別。
重ね合わせは情報不足を補うための単なるリストアップ」
としてしまうと干渉項は出てこない、というのは変わらない。
175:ご冗談でしょう?名無しさん
09/07/10 12:01:02
>>174
>|ψB>は、観測すれば地点aで必ず見つかり、aにはいない状態、
訂正:|ψB>は、観測すれば地点bで必ず見つかり、aにはいない状態、
176:ご冗談でしょう?名無しさん
09/07/10 13:49:57
量子力学でいう状態の重ね合わせ
非局在は、エネルギーとかの演算子に関するものでなく
状態ベクトルに関するもの。
それは、人間の情報不足による不確定以上の量子力学的な意味を持つ。
また、量子的な重ね合わせ自体が、質量を分割して配置したわけでなく
状態そのものの重ね合わせ(人間にはイメージ不能だが)。
収縮にしても質量が移動するというより、状態の選択なんだな。
そしてそれは、単に知らなかった状態が判明するのでなく、
干渉項を破壊して全く別の状態を作り出す行為というわけだ。
------
一方、ボーム的解釈のように、
粒子はいつでも一時に一カ所に存在し、あらゆる意味で他のところには存在しない。
不確定と人間の情報不足よるものと初期条件の誤差等の小さなランダムネスしかない。
だが、粒子の振舞いである波動関数は非局所的でよい。
その非局所的をもたらすものは量子ポテンシャルとして形で図示できる。
という立場では、観測によって変化するのは量子ポテンシャルの方なんだな。
177:ご冗談でしょう?名無しさん
09/07/11 17:09:06
>>174-176
質量や電荷が局在して粒子の状態になっている、
この時の「状態」と
aで見つかる状態とbで見つかる状態の重ね合わせの状態になっている、
この時の「状態」は別物。
粒子がaで見つかるのならば、
観測する直前でも粒子として(≒質点、点電荷として)a近傍にいないと相対論に反する。
でも、そうすると状態の記述に限界があるので、干渉項が出なくなって都合が悪い。
だから、
観測していないことに関しては、何も言及しない
という、コペンハーゲン解釈になる。
ちなみにコペンハーゲン解釈では、何も言及しないのだから
観測していないときに、電子は波としてスリット通過する、とも言わないし
観測していないときに、1個の電子が2つのスリットを同時に通過する、とも言わない。
178:ご冗談でしょう?名無しさん
09/07/11 19:48:24
1:「粒子はいつでも一度に一カ所にしかいられない」と
2:「観測あるなし関係なく局在」とは
意味が違うのですね。
179:ご冗談でしょう?名無しさん
09/07/12 01:00:03
>>178
「観測していなければ、
粒子はいつでも一度に一カ所にしかいられない、とも
粒子はいつでも同時に複数の場所にいられる、とも言えない」
これは、解釈。物理じゃない。状態の記述の限界に起因。
「観測する、しないに依らず、質量や電荷が局在している」
これは、相対論からの帰結。物理。
180:ご冗談でしょう?名無しさん
09/07/12 06:39:25
解釈と物理、よくわかりました。ありがたいですね。サンクス
181:ご冗談でしょう?名無しさん
09/07/12 21:27:24
言葉だけでは判断しずらい。
でもサスガですね、ここの方達はレベル高い。
182:福島 俊明
09/07/13 04:51:19 OG07MK0m
突然の書き込み申し訳ありません。
集団ストーカー、電磁波によると思われる身体攻撃、音声送信被害に遭っています。
思考盗聴によると思われるプライベートな情報の搾取、また、その悪用。プライベート情報を最大限に悪用した音声送信被害と、電磁波によると思われる身体攻撃を受けています。
超単パルス的な特性を持ち、さらに、電離性の電磁波(放射線)が悪用されている可能性もあります。
現在、思考盗聴器の原理を考えています。原理が分かれば、被害をICレコーダーに記録する事も不可能ではないと考えています。詳しくは、”ハイテク犯罪に関する調査と研究”ページ内の”思考盗聴器の可能性”を見て頂ければと思います。
工学的に考えられる可能性など、情報がありましたら連絡を頂ければと思います。
どうぞよろしく御願いたします。
ハイテク犯罪に関する調査と研究
URLリンク(haitekuhannzai.ganriki.net)
共同研究者のページ
加害者への公開質問状
URLリンク(mongar.biroudo.jp)
183:ご冗談でしょう?名無しさん
09/07/13 07:39:36
>>182悪ふざけはほどほどにしろ
184:ご冗談でしょう?名無しさん
09/07/13 09:52:21
地点bではなく地点aにいる状態 と
地点aではなく地点bにいる状態 が
本質的な(単なる測定者の情報不足でない)
重ね合わせになっている状態は、
単に電子が分割されて
地点aと地点bに存在するのとは意味に違う。
後者の場合、観測によって状態が収縮すると光速を越えるだろうが、
前者の場合、単純に光速を越えたといっていいのかなあ?
逆に、ボーム的解釈
粒子はいつでも一時に一カ所に存在し、あらゆる意味で他のところには存在しない。
不確定と人間の情報不足よるものと初期条件の誤差等。
非局所的は量子ポテンシャルの形で描ける
では、量子ポテンシャルの変形が光速を越えるよねえ。
波動関数は思弁だからいいという説もあるが、
結局、粒子が遠隔地の観測状態の変化により一瞬で振舞いを
変えていることに関してはブラックボックス化してんだよなあ。
185:ご冗談でしょう?名無しさん
09/07/13 17:03:17
>>184は、ガチで、低脳カス野郎。w
未だに波動関数で何を記述しているのが理解できず、
さらに「物理」と「解釈」の区別もできない。
186:ご冗談でしょう?名無しさん
09/07/13 17:15:05
>粒子がaで見つかるのならば、
>観測する直前でも粒子として(≒質点、点電荷として)a近傍にいないと相対論に反する。
>でも、そうすると状態の記述に限界があるので、干渉項が出なくなって都合が悪い。
>だから、
> 観測していないことに関しては、何も言及しない
この人は、観測する直前でもa近傍にいると解釈している。
この立場では干渉項はでない。
適当に物理と解釈とかレッテルを貼ってもだめだな。
どちらも人間がどう考えるかいう話。
結局、言及が矛盾している。
187:ご冗談でしょう?名無しさん
09/07/13 17:39:38
>>186
観測する直前でも粒子として(≒質点、点電荷として)a近傍にいないと相対論に反する。
これは「物理」。
でも、>>163に書いてあるように、観測前に粒子の位置が確定してしまうと、干渉項が消える。
これは、状態の記述に限界があるためなので、「物理」と整合性を持たせるために
「物理」ではちゃんと言えることでも、敢えて言及しない選択をした。
それが、「観測していないことには何も言及しない」という「解釈」。
なんでそんな後ろ向きともとれる選択をしたのかというと、
それは波動関数で振舞いを記述するのが大成功していたから。
つまり、ここで問題にしているのは
「解釈」の一部である「観測していないときには粒子は1箇所にいるとは言えない」だけ
が一人歩きして、「観測の直前でも粒子である」という「物理」を否定するのが、間違い
であるということ。
188:ご冗談でしょう?名無しさん
09/07/13 18:02:26
電子はいつでも粒子(≒質点、点電荷)として観測されるという実験事実
および相対論から、電子はいつでも粒子であるといえる。
これは、「物理」。
「観測していなければ何も言及できない」というのは「解釈」。
「解釈」では「物理」の結論を否定できない。
というわけで、
電子は粒子。
電子の力学的振舞いはシュレディンガー方程式で記述される。
シュレディンガー方程式(=微分方程式)の解が、波動関数と呼ばれる。
だな。
189:ご冗談でしょう?名無しさん
09/07/13 18:04:03
波動関数の非局所性が何処から来るのかとか、
それがどうやって収縮するのかとかに関しては
多くのモデルがある。
相対論とのからみでは、非局所性が超光速で破れる?原因自体が問題となる。
観測していないときに粒子がどういう状況にあろうが、
そもそも非局所的な振舞いが実現する具体的なメカニズムについて
決着がついていないのに、それが破れるときの相対論との関係を
論じなければいかんというジレンマがある。
ましてや、なぜ非局所的な振舞いをするのか言及しない立場であれば、
それは相対論に抵触しないのではなく、
はじめから議論する条件すら整っていないだけになる。
さらに、どういう立場をとるにしろ、
いくら波動関数の収縮がおきても、
実験の初期状態と観測結果を比較するだけなら
相対論を破って、意味のある情報を超光速で送ったり、
粒子を超光速で送ることは出来ない というのが、
量子エンタグルや量子テレポーテションなどの流行の研究で
確かめられている。
だから、実験結果で白黒つけるのも不可能に近い。
これもジレンマを深刻にしている。
190:ご冗談でしょう?名無しさん
09/07/13 18:29:02
>>187
言葉遊びはいらん。
観測する直前にa近傍にいたと仮定すると、
(量子ポテンシャルを仮定しない限り)干渉項がでないはずだということになる。
つまり、仮定と観測結果が整合しない。
しかし、観測する直前にa近傍にいなかったと仮定すると
仮定と相対論が整合しない。
観測する直前にa近傍にいた+量子ポテンシャルを仮定すると
干渉項はでるが、量子ポテンシャルの収縮を仮定する必要がでる。
しかし、その仮定と相対論が整合しない。
観測する直前にa近傍にいた状態と、いない状態が重ね合わせだった場合、
収縮したのは電子の電荷等ではなく、状態そのものなので、
電子が「移動」したともしないのか定義もあいまいであり、
相対論との整合性自体をどう論じれないいのか定義するのも困難。
結局、言及しようがしまいが、仮定から導かれる帰結と
実験事実(もしくは実験的にも確かめれた既知の法則)との整合性の問題。
191:ご冗談でしょう?名無しさん
09/07/13 18:34:50
>>190
>相対論との整合性自体をどう論じれないいのか定義するのも困難。
相対論との整合性自体をどう論じればいいのか定義するのも困難。
192:ご冗談でしょう?名無しさん
09/07/13 18:41:35
量子的存在の非局所性の原因を具体的に特定しないと
非局所性がなくなるプロセスと相対論の関係
についても明確な議論はできないな。
193:ご冗談でしょう?名無しさん
09/07/13 18:45:02
>>189
波動関数は脳内の純粋な思弁。
波動関数の収縮は微分方程式の初期条件のリセットにすぎない。
「どうやって収縮するのか」とか、物理じゃないから。
194:ご冗談でしょう?名無しさん
09/07/13 18:48:19
>>190は「解釈」と「物理」区別がつかない、低脳カス野郎。w
195:ご冗談でしょう?名無しさん
09/07/13 18:52:39
>>192
>量子的存在の非局所性の原因を具体的に特定しないと
これは、まだ未解決の問題。
>非局所性がなくなるプロセスと相対論の関係
観測時に必ず粒子として存在するので、
少なくとも時空間的な近傍においても粒子として存在しないと
相対論に反する。
196:ご冗談でしょう?名無しさん
09/07/13 19:00:33
物理(ここでは相対論)と整合させるために、
敢えて「物理の結論」には目をつぶるのが「解釈」。
それなのに、なんで、解釈の方に合わせて「物理の結論」を否定するのか、
わからん。
やはり、低脳カス野郎だからか。w
197:ご冗談でしょう?名無しさん
09/07/13 19:03:50
でも、一部の干渉項消滅のプロセスに関しては非局所性の原因を特定しなくても大丈夫。
「量子デコヒーレンス」のモデルとかがあるらしいよ。
観測するときに外部の環境と相互作用するために
非常に多くの波動関数とこみで時間発展を考える必要がでてくる、
そのプロセスで干渉項が打ち消し合って消滅するんでないかというモデル。
干渉項が消えて、見かけ上、波動関数の収縮が起きるような結論が得られるらしいよ。
全ての量子エンタグルの破壊が説明できるかどうかはしらんけど。
198:ご冗談でしょう?名無しさん
09/07/13 19:14:07
>>197
干渉時には状態が確定するから、干渉項が消えるのは当たり前なのでは?
199:ご冗談でしょう?名無しさん
09/07/13 19:16:03
>>195
>>量子的存在の非局所性の原因を具体的に特定しないと
>これは、まだ未解決の問題。
でも、そもそも相対論は近接相互作用しか認めないんですよね。
何かの力場もない(or 仮定しない)のに、
粒子が非局所的な振舞いしていること自体は問題にしないのですか?
その問題が特に顕著になるのが収縮のときであるに過ぎず、
問題の本質は遠隔相互作用があるかのような量子的な振舞い自体なのでは?
200:198
09/07/13 19:16:34
干渉時には→観測時には
指が滑った。スマソ。
201:ご冗談でしょう?名無しさん
09/07/13 19:20:58
>>199
>粒子が非局所的な振舞いしていること自体は問題にしないのですか?
何も問題ない。
というか
質量や電荷が局在している粒子が、局所的な振舞いをするのが、古典力学
で
質量や電荷が局在している粒子が、非局所的な振舞いをするのが、量子力学
なんだろ。
202:ご冗談でしょう?名無しさん
09/07/13 19:26:39
やっぱり古典論に執着した極めて浅い考え方の低脳カス野郎だったんだ。w
203:ご冗談でしょう?名無しさん
09/07/13 19:27:15
>>198
>干渉時には状態が確定
干渉項を考えないと実験結果が再現しないことから帰結されるように、
「状態が確定」は、単なる人間の知識不足が完全になったからではないでしょ。
それを踏まえた上で、観測によって状態が確定する(かのように見える)プロセスを
波動関数だけで記述できないか?というアプローチらしい。
観測は、測定機器=熱浴(多数の自由度と初期状態のランダムネスをもつもの)
との接触であると考えると、極短時間で干渉項が消えていくんだって。
観測装置だって構成要素が多いだけで波動関数はあるんだろうということらしい。
さすがに数式を追えてないんで断言はできないが。
204:ご冗談でしょう?名無しさん
09/07/13 19:32:08
>>203
多世界「解釈」、だな。
205:ご冗談でしょう?名無しさん
09/07/13 19:35:06
>>201
それをいったら相対論って古典論の最終段階やん。
206:ご冗談でしょう?名無しさん
09/07/13 19:40:39
>>204
>多世界「解釈」、だな。
エバレットの「多世界」解釈とは全然違うよ。
単に環境の影響まで考慮した波動関数の時間発展の計算。
解釈というより数式の純粋な変形。
その結果、干渉項が小さくなるんだってさ。
207:ご冗談でしょう?名無しさん
09/07/13 19:41:32
>>205
つディラック方程式
208:ご冗談でしょう?名無しさん
09/07/13 19:43:22
>>206
>単に環境の影響まで考慮した波動関数の時間発展の計算。
それ、多世界解釈…
209:ご冗談でしょう?名無しさん
09/07/13 20:00:53
>>207
>つディラック方程式
それは
相対論的量子力学の方程式であって
相対論の要請の一部、エネルギー運動量関係に質量の効果と
さらにローレンツ変換に対して共変な性質を加え、かつ、負の確率密度がでないように
数学的な仕掛けを施したもの。
普通の量子力学の構築の際に
古典力学的な運動量やエネルギーから、量子論的運動量演算子に置き換えていったように、
最後の古典論である相対論の運動量やエネルギーから、量子論的運動量演算子に置き換えルールを
作ったんだよね。
210:ご冗談でしょう?名無しさん
09/07/13 20:18:39
>>208
>それ、多世界解釈…
ぶっとんだ解釈なんであんまり関わりたくないけど.....
全部、世界ごと波動関数で書いてしまえというモチベーションは似ているが、
多世界解釈は、観測によって状態が確定することを多世界への分岐したと見なす。
つまり、aという観測値を得た世界とbという観測値を得た世界に分岐したと。
その多世界自体は依然重ね合わせの状態にあるし、波動関数的には干渉項も消えてないが、
観測者自体も世界ごと重ね合わせの状態にあり、自分の世界しか認識していないので
そのことに気がつけない。というもの。
熱浴との接触により、波動関数自体の時間発展で
波動関数の中の干渉項が次第に小さくなる
というのとは異なると思うよ。
別に「観測」でなくても、多自由度をもった巨視的な系との接触で
干渉項が減衰するなら、観測のときにも同じことが起きてないかということでしょうよ。
211:ご冗談でしょう?名無しさん
09/07/13 21:02:09
ディラク方程式って、演算子の方が非局所的にならないようにしているけどさ。
波動関数の方は非局所的なんでないの?
212:ご冗談でしょう?名無しさん
09/07/13 23:28:05
>波動関数で電荷や質量がどう扱われるか知りたければディラク方程式を調べろよ。
>>98のディラク方程式には何かスゴいパワーが秘められている気がするんだ。
213:ご冗談でしょう?名無しさん
09/07/14 09:43:31
ディラック、ディラク....DIracにしとこうぜ。
214:ご冗談でしょう?名無しさん
09/07/14 21:38:15 iKaIvTle
>>169
以下の1)-4)の質問にお答え頂きたく思います。
1)
>(粒子が)観測していないときにも局在している
即ちあなたは、「観測していないときにも粒子の位置は常に確定している」という主張をされるという理解でよろしいですか?
2)
粒子には位置の自由度の他にスピン自由度があることが知られていますが、
粒子の位置が観測しなくても常に確定しているのだとすれば、それを敷衍して
「観測していないときにスピン自由度も常に確定している」という主張をされるという理解でよろしいですか?
そうだとすれば、x方向とy方向感のスピンの間に不確定性が生じるのは、隠れた変数による寄与と考えれば良いですか?
そうでないとすれば、なぜ敷衍させてはならないかを教えてください。
3)
>観測により質量や電荷が瞬時に局在化することになり、
>これは相対論に反する。
これを読む限り、あなたは観測をしていないときも相対論的要請、即ち局所性は保たれると受けとりますが、それでよいですか?
4)
1)あるいは2)の「観測をしていなくても常に物理量は確定している」という要請、
3)の「観測をしていなくても系は非局所的相互作用をしない」という要請を受け入れれば、
離れた2点で2つの物理量について遅延選択実験を行った場合、
その相関についてCHSH不等式なる不等式が満たされることが数学的に示されています。
一方、エンタングルメントした2光子の2方向の偏光の相関を測定したときに、
相関がCHSH不等式の上限を破ることが確認されていますが、この実験結果についてどうコメントされますか?
215:ご冗談でしょう?名無しさん
09/07/14 21:53:57
【目子と酢字の二面性】?【えっちなんだよ!】
「鶴目子力学ってなーに?」という一般人にまで、分かる説明をお願いします。
216:ご冗談でしょう?名無しさん
09/07/15 00:19:45
どんな教科書で量子力学を勉強したらこうなるんだろう
217:ご冗談でしょう?名無しさん
09/07/15 01:46:11
>>214
では、まず、「観測していないときにも粒子の位置」というときの
「粒子の位置」って何なのか、定義してね。
「粒子の位置」が定義できるのならば、観測していないときでも、電子は粒子だろ。
量子力学の不確定性原理て
「粒子であるとかないとか」が不確定になっているわけではなくて
「粒子である電子の位置」が不確定なだけだろ。
「質量とか電荷とかが局在しているという意味で粒子のカタチになっている」
のを短絡的に
「粒子の位置が局所的である」と思い込んでいるのが、イケない。
218:ご冗談でしょう?名無しさん
09/07/15 08:02:14
質問した者で169さんではないですが>>214
1)
確定しているとは言っていないです。どこかに居るけど∫|ψ|^2dv=1、
どこに居るかは確定できない。確率でしか|ψ|^2dvわからない。
3)
>あなたは観測をしていないときも相対論的要請、即ち局所性は保たれる
自分は電子の電荷や質量はその通りに理解しています。
位置はある場所aで見つかったなら、その他の場所での情報が消えるので
「記述の限界」となります。重ね合わされた状態でしか表わせられない。
219:ご冗談でしょう?名無しさん
09/07/15 08:10:27
>>217
>「質量とか電荷とかが局在しているという意味で粒子のカタチになっている」
>のを短絡的に
>「粒子の位置が局所的である」と思い込んでいるのが、イケない。
学部初年や自分のように三流だと混同しやすいと思います。
理解が難しい概念のひとつですね。
220:ご冗談でしょう?名無しさん
09/07/15 09:52:15
>>219
だけどねえ。>187みたいに
>観測する直前でも粒子として(≒質点、点電荷として)a近傍にいないと相対論に反する。
>これは「物理」。
といってしまうと、質点、点電荷はいいとして、位置(a近傍)までも観測前に但一つとして
強調している。
これは危険な表現であって、そのまま
直前の直前...と考えると粒子の飛跡が一意に決まっていたかのような印象を与える。
量子力学において、一粒子の飛跡が一意に決まっていたと考えるのは、
それこそ何回もでてくるボーム先生の解釈くらいだろう。
ボームのように考えない限りは、一粒子の飛跡が一意に決まっていたと考えると
2重スリットとかだと、干渉項がでる理由がわからなくなるばかりか、
Aの穴を通った粒子とBの穴との遠隔相互作用を暗黙に仮定していることに
なりかねない。遠隔相互作用は相対論的にはよろしくない。
とりあえず一粒子の飛跡が決まっている状態が、重ね合わせられてると考えて回避しているんだな。
波といっても、誰も質量や電荷の波のような古典的な波ではなく、
観測したときにある状態になる確率の平方根を振幅とする量子的な波なんだよなあ。
221:ご冗談でしょう?名無しさん
09/07/15 09:59:56
相対論を意識するなら、
空間と時間を分離してあつかう形式の量子力学ではだめなんでないだろうか?
Dirac方程式以降、たぶん場の量子論で語らないと駄目か?
詳しい人、いない?
222:ご冗談でしょう?名無しさん
09/07/15 10:33:16
>量子力学において、一粒子の飛跡が一意に決まっていたと考えるのは、
>それこそ何回もでてくるボーム先生の解釈くらいだろう。
観測前に、一粒子の飛跡が一意に決まっていたとも、決まっていなかったとも
言わないのが、正統的な解釈。
「何も言及しない」という「解釈」なのに、都合の良いところだけを取り出して
「物理」を否定するのが、ダメダメ。
「解釈」の方を金科玉条にしちゃってるのは、初心者相手の解説に散見されるので
仕方のないことなんだと思う。
223:ご冗談でしょう?名無しさん
09/07/15 11:31:56
>>222
>「何も言及しない」という「解釈」なのに、都合の良いところだけを取り出して
>「物理」を否定するのが、ダメダメ。
「観測する直前でも粒子としてa近傍にいないと相対論に反する。」
都合の良いときだけ観測前について言及しておるがな。
224:ご冗談でしょう?名無しさん
09/07/15 11:35:44
>>222
>観測前に、一粒子の飛跡が一意に決まっていたとも、決まっていなかったとも
>言わないのが、
「言わない」というより、そういう古典的表現にそぐわないと見なすんだろ。
(ボームは別)
225:ご冗談でしょう?名無しさん
09/07/15 13:21:35
>>223
>「観測する直前でも粒子としてa近傍にいないと相対論に反する。」
>都合の良いときだけ観測前について言及しておるがな。
これが、「解釈」の方を金科玉条にしちゃってる、見本だな。
「物理」的には観測前の状態について考えることはできるが、
「解釈」的には言及できないので、物理の方が間違いだ、みたいな思い込み。
226:ご冗談でしょう?名無しさん
09/07/15 14:08:30
>>224
>「言わない」というより、そういう古典的表現にそぐわないと見なすんだろ。
言葉遊びはいらん。
状態の記述に限界があるから、物理と整合しないことがある。
で、それに関しては言及しないことにして、不整合を回避する一つの「解釈」だよ。
それがコペンハーゲン解釈。
観測していないときには「波として存在する」とか「古典的表現にそぐわない」とかも、言わない。
227:ご冗談でしょう?名無しさん
09/07/15 21:54:30
>>220
測定間隔を短くすれば位置に関して収斂するのでは。
ただし運動量は大きく乱れる
228:ご冗談でしょう?名無しさん
09/07/16 06:19:51
いままでの議論をまとめてくれ
229:ご冗談でしょう?名無しさん
09/07/16 10:26:52
電子はいつでも粒子(≒質点、点電荷)として観測されるという実験事実
および相対論から、電子はいつでも粒子であるといえる。
これは、「物理」。
「観測していなければ何も言及できない」というのは「解釈」。
状態の記述に限界があるので、「物理」と整合しない場合がある。
その不整合には言及しないという選択で不整合性を回避しているのが
コペンハーゲン解釈。
これまでは「解釈」の方が「物理」を否定して、「電子は粒子ではない」と言われていたが、
それが誤りであることがわかった。
というわけで、
電子は粒子。
電子の力学的振舞いはシュレディンガー方程式で記述される。
シュレディンガー方程式(=微分方程式)の解が、波動関数と呼ばれる。
だな。
230:ご冗談でしょう?名無しさん
09/07/16 10:30:43
>>225
>物理の方が間違いだ、みたいな思い込み。
そういうことではないだろ。
間違いも何も、ローレンツ共変な量子力学も一応あるじゃん。
重力の量子化までは難しいらしいが。
相対論が間違っているなんて人はいないでしょ。
波動関数の収縮に関しては、そもそも
波動関数自体が古典的な物理量の波でない。
そして、そこから予言される粒子としての観測結果は、
相対論に反するものはでてこない。(現実にあうに構築されている)
だが、観測していないときには、粒子は観測時とは明らかに異なる
非局所性を持っているとせざるを得ない実験結果がある。
(相対論に合致する近接相互作用をする既知の「場」だけでは説明し難い)
観測結果から外挿して古典的な描像をもとに、観測していないときの
粒子の唯一つの飛跡を描こうとすると、矛盾が生じる
(or 量子ポテンシャルみたいな新しい場を考える必要がある)
粒子の唯一つの飛跡を描こうとするなら、霧箱のように観測し続けるしかない。
そうすると干渉等、量子力学特有の現象は起きない。これは実験事実。
それだけのことだろ。
231:ご冗談でしょう?名無しさん
09/07/16 10:50:17
状態の重ね合わせというのは、たとえば
ある粒子がAを通った状態とBを通った状態の重ね合わせ。
決して粒子が二つに割れて左右の穴を通った状態ではないし、
だから、左右の穴の出口で待ち構えていても粒子のカケラを補足することはない。
ここは、いくら干渉を起こすと言っても、古典的な波とはちがうところ。
一方、観測しつづけると典的な粒子に近い結果がえられるといっても、
観測していない区間があると、粒子の唯一つの飛跡を想定したのでは導けない
非局所性を秘めた実験結果(干渉など)を得られてしまうのが古典的な粒子と違う所。
232:ご冗談でしょう?名無しさん
09/07/16 12:27:15
まとめの補足
いまだに、「解釈」と「物理」の区別がつかなくて
「物理」にイチャモンをつけてくる>>230みたいのが、存在する。
いまだに、「電子」と「電子の波動関数」が区別できなくて
空間で何かが干渉しているとか思い込む>>231みたいのが、存在する。
233:ご冗談でしょう?名無しさん
09/07/16 13:00:55
>>228
>>232が1人で騒いでるだけだから別に気にしなくていいよ
234:ご冗談でしょう?名無しさん
09/07/16 13:09:43
干渉についてはいろんな解釈があって、
ボーム流だと、物ではなく量子ポテンシャルが干渉している。
よくある解釈だと、複数の状態から出てくる状態についての干渉項であり、
物や場自体の干渉ではないとされている。
その他にも、多世界解釈などもあるが、深入りはしないのが吉。
あるいは、どうせ古典的な波や古典的な粒子の描像は成り立たないし、
どのみち検証できるのは実験結果だけなので、
観測-波動関数-次の観測値の予想という手続きがきっちりしていれば
永久に実験で検証できないモデルなどどうでもいいではないか
という実際的な立場もある。
235:ご冗談でしょう?名無しさん
09/07/16 22:14:09
>>234
>という実際的な立場もある。
まともな物理学者はほぼ全員この立場だがな
236:ご冗談でしょう?名無しさん
09/07/16 22:22:43
「電子」と「電子の波動関数」が区別できない>>234が一人で悩んでるだけ
だろ。理解できないのは、コイツくらいじゃね?
>干渉についてはいろんな解釈があって、
>ボーム流だと、物ではなく量子ポテンシャルが干渉している。
つまり、「物」が干渉している解釈がある、ということだな。
で、どんな解釈だ?
237:ご冗談でしょう?名無しさん
09/07/17 07:14:49
自分みたいに上級クラスでない大学だと
なんとなくいだいているのが>>231なんです。
測定すれば固有状態という粒子像なので
重ね合わせΣanφn(x)あるいは∫a(f)φ(x,f)df^3が
どのようなイメージなのかずっと分からなかったですね。
238:ご冗談でしょう?名無しさん
09/07/17 10:10:25
>>236
>つまり、「物」が干渉している解釈がある、ということだな。
どんな論理やねん。
ボーム解釈では 粒子 と 量子ポテンシャル の2種類の要素があり、
干渉するのは 粒子 ではなく、量子ポテンシャルの方らしい。
だからって、どうして「「物」が干渉している解釈がある、ということ」になるの?
少し落ち着けよ。
239:ご冗談でしょう?名無しさん
09/07/17 11:51:32
>>238
なにトボけたことを。
>ボーム流だと、物ではなく量子ポテンシャルが干渉している
>ボーム解釈では干渉するのは 粒子 ではなく、
ボーム以外の解釈で物や粒子が干渉するのでなければ
こんな書き方はしないだろ。
まぁ、「物」が干渉するという解釈などない、ということがわかってない
のは>>234だけということだな。
240:ご冗談でしょう?名無しさん
09/07/17 13:05:44
思い込みの激しいことでw
241:ご冗談でしょう?名無しさん
09/07/17 13:39:06
ボルン以前:物が波動化して干渉している?
(観測時に粒子のカケラにならないから駄目、収縮時に光速をこえるから駄目)
ボルン以後の一般:物自体の干渉ではなく、状態間の干渉とみなそう。ただ一つの飛跡など描けない。
ボルン以後ボーム解釈:状態の干渉など考えない、物自体も干渉しない、量子ポテンシャルが干渉する。
世間の量子力学の利用者:初期値から観測値が予想できれば、あとはどーでも、いいんじゃね?
多世界解釈を別にすれば、おおざっぱには、こんなとこでないか?
まあ、英語のwikiとかだと他にも出典つきで、13の解釈がリストアップされているけどね。
かなり変なの(俺の主観ね)から、オーソドックスなのまでいっぱいあるなw
242:ご冗談でしょう?名無しさん
09/07/23 19:46:35 Lsen9w5n
状態の収縮なんてものは無いのに、
無理に作り出そうとするからおかしくなる。
シュレーディンガー方程式で散乱問題解いてもそんな解は存在しないだろ。
243:ご冗談でしょう?名無しさん
09/07/23 19:52:45
>>242
は?
244:ご冗談でしょう?名無しさん
09/07/24 17:16:40 r/t7PWOb
議論中失礼します。
学部2年のひよっこなんですが、複素共役とフラックスについて教えて下さい。
①波動関数ψのような、複素数を二乗するときに複素共役をとる理由。
②そもそも複素共役とは何なのか。
③フラックスとは何なのか。
245:ご冗談でしょう?名無しさん
09/07/24 17:36:14
>>244
①「複素数を二乗」じゃなくて、「複素数の絶対値を二乗」じゃない?
そうだとすると、実数にするためだよ。
②2つで1つみたいなやつ。かけると実数になるから便利。
③詳細は忘れたけど、円錐を横に倒した時の円錐の角度がどうとか・・・。
だった気がする。
246:ご冗談でしょう?名無しさん
09/07/24 18:57:30
③フラックスとは(∇ψ^*ψーψ^*∇ψ)のことじゃまいか
247:ご冗談でしょう?名無しさん
09/07/24 19:18:44
グリーンの定理、確率の流れ
248:245
09/07/24 19:49:59
>>246
そっちですか
249:ご冗談でしょう?名無しさん
09/07/25 00:46:53 1nVShLTj
>>244>>245
丁寧にありがとうございます。
複素共役についてはよくわからりました。ありがとうございます。
フラックスについては、確率の流れ(?)というものです。ウィキで調べても、通過量としか書いてなく、量子力学におけるフラックスとは何なのか……
250:ご冗談でしょう?名無しさん
09/07/25 00:48:01 1nVShLTj
補足
>>246そのものです。
251:ご冗談でしょう?名無しさん
09/07/25 00:48:29 7u27PXUY
■■■■■■■ このスレは他板・他スレ運営妨害の非常に悪質糞スレの為に ■■■■■■
■■■■■■■反感を買って終了しました。 皆様のご愛顧有難う御座いました■■■■■■
■■■■■■■■終■■■■■終■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■終終■■■■■終■■■■■■■了了了了了了了了了了了了■■■■■
■■■■■■終終■■■■■終終終終終終■■■■■■■■■■■■■了了■■■■■
■■■■■終終■■終■■■終■■■■終■■■■■■■■■■■■了了■■■■■■
■■■■■■終■終終■■終終終■■終終■■■■■■■■■■■了了■■■■■■■
■■■■■■■終終■■終終■終終終終■■■■■■■■■■■了了■■■■■■■■
■■■■■■終終■■■■■■■終終■■■■■■■■■■■了了■■■■■■■■■
■■■■■■終■■■終■■■終終終終■■■■■■■■■■了■■■■■■■■■■
■■■■■終終終終終終■■終終■■終終■■■■■■■■■了■■■■■■■■■■
■■■■■■■■終■■■終終■■■■終終■■■■■■■■了■■■■■■■■■■
■■■■■■終■終■終■■■■終終■■■■■■■■■■■了■■■■■■■■■■
■■■■■■終■終■終■■■■■終終■■■■■■■■■■了■■■■■■■■■■
■■■■■終終■終■終■■■■■■■■■■■■■■了了■了■■■■■■■■■■
■■■■■終■■終■■■■終終終■■■■■■■■■■了了了■■■■■■■■■■
■■■■■■■■終■■■■■■終終終■■■■■■■■■了了■■■■■■■■■■
252:ご冗談でしょう?名無しさん
09/07/25 02:11:24
>>249
>>246さんのとおり、確率の流れであってますよ。
これがあることで反射率や透過率が求められます。
流体力学を知ってるなら連続の式と比較してみては?
253:ご冗談でしょう?名無しさん
09/07/25 03:02:02 1nVShLTj
>>252
ありがとうございます。複素共役の話も含めてよくわかりました。
ありがとうございました。
254:ご冗談でしょう?名無しさん
09/08/01 15:00:50
しばらくレスも途絶えているようなので
このスレとしては
電子はどんなときでも粒子。
電子の力学的振舞いはシュレディンガー方程式で記述される。
シュレディンガー方程式(=微分方程式)の解が、波動関数と呼ばれる。
が、結論だな。
255:ご冗談でしょう?名無しさん
09/08/01 15:06:03
電子はいつでも粒子(≒質点、点電荷)として観測されるという実験事実
および相対論から、電子はいつでも粒子であるといえる。
これは、「物理」。
「観測していなければ何も言及できない」というのは「解釈」。
状態の記述に限界があるので、「物理」と整合しない場合がある。
その不整合には言及しないという選択で不整合性を回避しているのが
コペンハーゲン解釈。
これまでは「解釈」の方が「物理」を否定して、「電子は粒子ではない」と言われていたが、
それが誤りであることがわかった。
あと、量子力学をよくわかってないボーム厨は、電子=粒子が理解できない
ことも明らかだな。
256:ご冗談でしょう?名無しさん
09/08/01 15:30:05
夏休みになって厨も帰ってきたか
257:ご冗談でしょう?名無しさん
09/08/01 15:38:40
測定されるときには電子はいつも粒子。
ただし、干渉を起こす実験条件では、
ある瞬間に電子がどこか一カ所だけにある状態が
たった1つだけあったとすると
そのままでは干渉項を出すことができず
矛盾が生じる。
これは、実験条件により電子が非局所的な影響を受けて
実験結果が変わるからである。
ただし、非局所的といっても粒子として観測された
結果を時系列的に並べても相対論に反する結果はもともとでない。
さて、この干渉や非局所性にに対しては複数の解釈が存在する。
一つは量子ポテンシャルという未知のポテンシャルが存在し、
これらが干渉して、粒子の動きを左右していると言う描像。
ボームらによる理論が詳しい。
別の解釈は、別の一カ所に電子が存在した状態との
間で「状態の重ね合わせ」を考える。
この状態の重ね合わせにより干渉項が生じる。
つまり、人間の知識の不足により複数の状態を考える必要があるのではなく
本質的に複数の状態の重ね合わせが起きていると考える解釈。
どうしても波の古典的描像から抜け出せず、これを電荷が分割されたとか勘違いして
批判する頓珍漢がいるが、重ね合わされているのはあくまでも粒子の状態。
また、物理と整合しないから「解釈」なのではなく、
複数の異なる解釈のどれが正しいか実験で検証不能であるから「解釈」と呼ばれる。
258:ご冗談でしょう?名無しさん
09/08/01 15:48:31
他にも、もう少し複雑なものから
いささか奇異な感じがするものまで複数の解釈が存在する。
「状態の重ね合わせ」を考えるコペンハーゲン解釈にも
ニュアンスのちがう複数の流派が存在するらしい。
英語のwikiですら、
URLリンク(en.wikipedia.org)
に表として有名なものが列挙されている。
259:ご冗談でしょう?名無しさん
09/08/01 15:54:48
うわっ、>>256=257=ボーム厨、レス速w
>また、物理と整合しないから「解釈」なのではなく
物理と整合しないところには言及しない、とゆうのがコペンハーゲン解釈。
しかし、これだけ読解力が低いくせに、スレに張り付いているのは、不思議だ。
260:ご冗談でしょう?名無しさん
09/08/01 15:56:12
>「状態の重ね合わせ」を考えるコペンハーゲン解釈にも
>ニュアンスのちがう複数の流派が存在するらしい。
もっとちゃんとお勉強してから、レスしましょうw
261:ご冗談でしょう?名無しさん
09/08/01 16:00:29
で、ボーム厨は
電子はどんなときでも粒子。
電子の力学的振舞いはシュレディンガー方程式で記述される。
シュレディンガー方程式(=微分方程式)の解が、波動関数と呼ばれる。
これはわかったのか?
262:ご冗談でしょう?名無しさん
09/08/01 16:02:27
Wave function collapse すなわち、観測時におきる状態の収縮についても
その過程を説明するための様々なアプローチが試みられている。
たとえば、比較的最近のだと量子デコヒーレンス(Quantum decoherence)などの考え方がある。
巨大で多くの粒子がランダムに集められた「環境」と相互作用をすると、
非常に短時間で量子干渉が強く減衰する事が数学的に示されている。
263:ご冗談でしょう?名無しさん
09/08/01 16:08:11
なお、物理学の多くの現場では、
実験的に区別のつかない複数の解釈については問題にしないのが普通。
結局、同じ実験結果の予測しかできないのであれば、
どうにもならんからね。
これは解釈などではなく、単に現実的な「態度」である。
264:ご冗談でしょう?名無しさん
09/08/01 16:12:43
もちろん、観測問題や波動関数の収縮などについては
現在でも複数の学者が活動中ではある。
265:ご冗談でしょう?名無しさん
09/08/01 16:17:09
ちなみに>255みたいに、人がいなくなったのをみはからって
最後に喋った奴が正しいなどというのは「解釈」ですらない。
266:ご冗談でしょう?名無しさん
09/08/01 16:34:00
ちなみに「波動と粒子の二面性?」で結論が出たのに
最後に解釈問題でウヤムヤにするのは愚行でしかない。
267:ご冗談でしょう?名無しさん
09/08/01 16:35:33
まぁ、ボーム厨も
電子はどんなときでも粒子。
電子の力学的振舞いはシュレディンガー方程式で記述される。
シュレディンガー方程式(=微分方程式)の解が、波動関数と呼ばれる。
これには反論しないようなので、スレの結論として確定だな。
268:ご冗談でしょう?名無しさん
09/08/01 20:38:48
>>267
これは驚いた。
今更何言ってんの?wwwww
初めの方の>81のリンク先にある通り、
電子が観測してない時でも粒子である。
非局所性は量子ポテンシャルなど別の何かが担っている。
というのがボームの解釈だろw
要するに>264の延長線上にある解釈の一つでしょw
知らずに、闇雲に反論していたのかよ。しょーもない。
で、ボームの解釈と全く異なるのが>257の後半だろ。
両論併記してあるんだろうが。
話にならん。
269:ご冗談でしょう?名無しさん
09/08/01 22:06:59
ホントにわかってないなぁ、ボーム厨w
「観測してない時でも電子は粒子である」 ←これは「物理」。
「観測してない時には、電子に関して何も言及しない」 ←これはコペンハーゲン「解釈」。
状態の記述に限界があるので、「物理」と整合しない場合があり
解釈が必要になる。
記述の限界を「量子ポテンシャル」で補ったのが、ボーム。
だから、観測していない時でも、「電子は粒子である」と言及できる。
Wikipediaを必死になって調べてるようなレベルだから、理解不能なんだろうねぇw
270:ご冗談でしょう?名無しさん
09/08/01 23:12:02
独善的なターミノロジーはいらん。
古典的な粒子描像でも、古典的な波の描像でも
説明不可能であるのが量子力学的な干渉現象。
だから、コペンハーゲン解釈では観測していないときには
粒子であるとも何であるとも言わない。
ただ、量子力学が観測値の予想を(確率的に)できることでよしとする。
このような扱いに満足せずに
局所的な粒子の描像は観測していないときにも適用できるのだ、とするには、
干渉性や非局所性(1粒子でもあらわれる)と両立させる何らかの仕掛けをつくらないと
物理モデルとしては何も言わない以上に不完全。
そこで、ボームは「量子ポテンシャル」というものが存在するモデルを考えた。
「量子ポテンシャル」に、非局所性や干渉性を担わせることで、
局所的な粒子の描像が観測していないときにもなりたつモデルを構築した。
271:ご冗談でしょう?名無しさん
09/08/01 23:19:23
>>269
>Wikipediaを必死になって調べてるようなレベルだから、理解不能なんだろうねぇw
何か勘違いしているようだが、
英語のwikiを出されたくらいで、
すぐに「必死」とかの単語が思い浮かぶようでは
情けないことこの上なし。
中身について詳しく調べたければ、引用元を調べて教科書なり、
Web of Knowledgeなりinspecで調べれば済むこと。
272:ご冗談でしょう?名無しさん
09/08/01 23:25:24
アタマの悪いボーム厨はいらんw
電子は量子力学的な「粒子」。
干渉「現象」などと言ってるところが、
古典から脱却できてないんだよなぁ。
「電子の波動関数」と「電子」の区別ができてない。
夏休みにもっとお勉強しましょうw
273:ご冗談でしょう?名無しさん
09/08/01 23:28:09
>>271
どうやら図星だたねぇw
そんなに気にすんなよww
274:ご冗談でしょう?名無しさん
09/08/01 23:54:05
>>272, 273
自分のふがいなさを他人に投影して
レベルの低い罵倒に持ち込むのが好きな奴だな。
独善的な言葉遣いと罵倒で誤摩化そうとしても駄目。
275:ご冗談でしょう?名無しさん
09/08/02 00:50:21
>古典的な粒子描像でも、古典的な波の描像でも
>説明不可能であるのが量子力学的な干渉現象。
まぁ、こんな素人向けの解説本に書いてあるようなことを鵜呑みにしちゃってる
程度のバカは、物理が理解できないから「何だか誤魔化されている」と感じるのも
仕方のないこと。
わからないようだから、また書いてやるよw
電子は、いつでも粒子として観測される ←実験事実
観測の直前も粒子として近傍にいる ←相対論からの要請
これを演繹すると
電子はいつでも粒子
だと言えるのが、「物理」。
一方、量子力学的な状態の記述には限界があるので、
この「物理」と整合しないことがある。
もちろん、量子力学の記述も「物理」もどちらも正しい。
で、この不整合を解決するのが「解釈」。
一番手っ取り早いのが、不整合になる場合を考えない
すなわち、観測前のことには言及しない、というのが
正統的コペンハーゲン解釈。
276:ご冗談でしょう?名無しさん
09/08/02 02:01:40
>観測の直前も粒子として近傍にいる ←相対論からの要請
特殊相対論と量子力学は統合されてるけど、
観測してないときにまで「粒子として近傍にいる」なんて要請はどこにもないし、そう要請しないと説明できない実験事実もないんだけど
277:ご冗談でしょう?名無しさん
09/08/02 02:08:01
【目子と酢字の二面性】?【えっちなんだよ!】
「鶴目子力学ってなーに?」という一般人にまで、分かる説明をお願いします。
278:ご冗談でしょう?名無しさん
09/08/02 05:53:08
>>275
>電子は、いつでも粒子として観測される ←実験事実
>観測の直前も粒子として近傍にいる ←相対論からの要請
>これを演繹すると
> 電子はいつでも粒子
>だと言えるのが、「物理」。
こいつは「背理法」、「演繹法」など古典論での論理展開のやり方が、
そのまま量子論でも通用すると思っている低脳カス野郎。
279:ご冗談でしょう?名無しさん
09/08/02 06:18:56
>>278
許される推論規則自体は古典論だろうと量子論だろうと、扱う物理に全く無関係だろ
古典で使えた排中律が量子では使えないとか、そんなアホな話は今のところ聞いたことがない
>>275がバカなのは、誤った前提を基に推論しているところだ
280:ご冗談でしょう?名無しさん
09/08/02 08:28:34
>>276
>特殊相対論と量子力学は統合されてるけど、
こんなこと言ってるけど、ちたーべべぐんぐ
すら知らない、チッタカぶりw
>波動関数で電荷や質量がどう扱われるか知りたければディラク方程式を調べろよ。
「ディラク方程式」という言葉を知ってるだけで、実際には解いたことのないコイツ
と同じくらいのアホっぷりだよな。
>>279
なにが、誤った前提、なの?w
281:ご冗談でしょう?名無しさん
09/08/02 08:45:27
>>279
「対生成」、「対消滅」などの考えは「排中律」が破れている。
282:ご冗談でしょう?名無しさん
09/08/02 10:16:39
>>281
観測の直前に電子が「対生成」するわけではない。
283:ご冗談でしょう?名無しさん
09/08/02 10:24:52 4BZJzi9K
夏だなあ
284:ご冗談でしょう?名無しさん
09/08/02 11:06:18
あれだよ、粒子が波のように飛んでくるんだよ^w^
285:ご冗談でしょう?名無しさん
09/08/02 12:14:56
粒子の航跡が直線だと干渉しない
航跡が正弦曲線だと干渉する
286:ご冗談でしょう?名無しさん
09/08/02 14:32:47
>>284, 385
んなこたあない。
いったい、どこの世界の話だ?
287:ご冗談でしょう?名無しさん
09/08/02 14:35:41
相手を罵倒するだけの奴はだめだな。
288:ご冗談でしょう?名無しさん
09/08/02 17:53:09
ホントに、素人向けの解説本に書いてあるようなことを鵜呑みにしちゃってアホ晒し
てるのに、それに気付かず相手を罵倒してる奴はダメだなw
289:ご冗談でしょう?名無しさん
09/08/02 18:30:16
>素人向けの解説本に書いてあるようなことを鵜呑み
こういう夏厨が知ったかぶりして叩かれるのが2chの醍醐味だよなw
290:ご冗談でしょう?名無しさん
09/08/02 19:14:44
>>280
>>特殊相対論と量子力学は統合されてるけど、
>
>こんなこと言ってるけど、ちたーべべぐんぐ
>すら知らない、チッタカぶりw
自分は相対論的量子力学はメシアでしか勉強していないのですが、
その知識では何のことだかわかりません。
また、状態の重ね合わせがあるときに>>276の何が間違っているのか
わかりません。
説明してくれませんか?
291:ご冗談でしょう?名無しさん
09/08/02 20:57:40
>>280
Zitterbewegungと、
>観測の直前も粒子として近傍にいる
の間にはどのような関係があるのか説明してみろよ、できるもんなら
現在我々が得ている実験結果は当然全て「観測したとき」という条件が付くわけだから、
それらの実験結果から観測してないときにどうなっているかを推測することなどできるわけない
>>281
対生成・対消滅からどうやって「Pまたは非P」の否定が出てくるんだ??
排中律が否定されるなら色々な数学の命題が使えなくなるが、量子論で用いる数学は直観主義に限るとでも?
292:ご冗談でしょう?名無しさん
09/08/02 21:33:06
>>291
>対生成・対消滅からどうやって「Pまたは非P」の否定が出てくるんだ??
質量、電荷量が拡散いているか(P)、局在しているか(非P)、対消滅状態か(¬P∨非P)。
だいたい、消滅ってなんだよ。オカルトかよ。ふざけんな!
293:ご冗談でしょう?名無しさん
09/08/03 00:25:03
>>292
>質量、電荷量が拡散いているか(P)、局在しているか(非P)
んな、古典論的な粒子描像を持ち込まれてもなあ。
そもそも拡散って....? 状態の重ね合わせの概念はどこいったん?
もしかして、波動関数の非局所性のことを指してんの?
294:ご冗談でしょう?名無しさん
09/08/03 09:29:57
>>292
「対消滅状態」ってそもそも何を指してるのか意味不明だが、
それは
>質量、電荷量が拡散いている
の否定と
>(質量、電荷量が)局在している
が異なるだけだろ
「二次方程式Eの二解の符号が等しい」(P)の否定が
「二次方程式Eの二解の符号が異なる」と言っているようなものだ
一見正しいように見えるが、虚数解で符号がそもそも定義されない可能性を完全に無視している
これに「二次方程式Eは虚数解を持つ」がPでも非Pでも無いなどといって騒ぐのはバカだ
前者は正確に書けば「二次方程式Eは実数解を持ちかつ二解の符号が等しい」だから、
その否定は「二次方程式Eは符号の異なる実数解または虚数解を持つ」となる
295:ご冗談でしょう?名無しさん
09/08/21 18:43:50
結局
電子は粒子
電子の振舞が波動
なんですね。
296:ご冗談でしょう?名無しさん
09/08/21 22:35:58
また、過疎ったときを狙って、自分の結論だけを言う奴が現れたか。
一つの電子すら、観測していないときには
粒子である状態が複数同時に考えられて、
その状態か重ね合わせられたりして、状態間で干渉を起こすのよ。
これは、情報不足により統計的に処理しているのとはわけがちがう。
そういう意味では、君の粒子という言葉が
「いつでも局所的にただ一カ所にのみ存在する」という意味なら
量子ポテンシャルのような粒子以外の非局所的なものを考えるか
それは観測時にしか成り立たないとするしかない。
何れにしても、非局所的な性質をどう考えるのか?ということになる。
同様に、分割して同時に複数の場所で観測にかかるような
古典的な波動では絶対にありえない。
だから「粒子」の「振舞いが波動」なんてのは中途半端な言説で
曖昧すぎて物理的にはさほど深い意味はない。
観測していないときに、単純に粒子の描像を徹底させようとすると
干渉や非局所性と相容れず、なにかしら非局所性を担う仕掛けを
考えないといけなくなるからな。
確かなのは、
観測されるときには不確定性原理による測定値のぼやけはあるが
ほとんどあたかも古典的粒子として振る舞う。
だが、どんな観測地が得られそうかはシュレディンガー方程式で計算せざるを得ない
それだけのこと。
297:ご冗談でしょう?名無しさん
09/08/22 06:39:02
また、ボーム厨が番人気取りで何か書いてるよw
>一つの電子すら、観測していないときには
>粒子である状態が複数同時に考えられて、
>その状態か重ね合わせられたりして、状態間で干渉を起こすのよ。
ふぅ~ん、状態=粒子なんだ。
つまり、一つの電子が複数同時に存在して、その電子が互いに干渉するんだぁw
>「いつでも局所的にただ一カ所にのみ存在する」という意味なら
>量子ポテンシャルのような粒子以外の非局所的なものを考えるか
「位置」の不確定性が理解できてないな。
電子の質量や電荷が広がっているのかい?w
>だから「粒子」の「振舞いが波動」なんてのは中途半端な言説で
>曖昧すぎて物理的にはさほど深い意味はない。
「波動関数は粒子の振る舞いを記述する」と、量子力学の教科書に書いてあるが…w
298:ご冗談でしょう?名無しさん
09/08/22 06:52:14
>観測していないときに、単純に粒子の描像を徹底させようとすると
観測して粒子の位置座標を特定することは可能ならば、
観測直前にその近傍に粒子が存在すると言えるだろう。
だが、そのように明言してしまうと干渉縞ができないことになったり
不都合になる。でも、これは振る舞いの記述に限界があるため。
だから、
>観測されるときには不確定性原理による測定値のぼやけはあるが
>ほとんどあたかも古典的粒子として振る舞う。
>だが、どんな観測地が得られそうかはシュレディンガー方程式で計算せざるを得ない
このような 「解釈」 が必要になる。
観測してない時のことには言及しない、のは物理じゃなくて解釈。
解釈の方を第一原理にしてるのは、初心者向けの解説書程度の知識のシロートw
299:ご冗談でしょう?名無しさん
09/08/22 08:26:20 BA9yupjf
電子の位置が確定できることになっているが、
具体的にどんな実験すれば確定できるの?
観測問題のインチキはこの点にあると思う。
300:ご冗談でしょう?名無しさん
09/08/22 09:17:17
>観測して粒子の位置座標を特定することは可能ならば、
>観測直前にその近傍に粒子が存在すると言えるだろう。
何の根拠があってそう言えるの??
301:ご冗談でしょう?名無しさん
09/08/22 11:23:19
>>299
スクリーンに当てる
>>300
相対論
302:ご冗談でしょう?名無しさん
09/08/22 11:40:14
>>301
スクリーンの画素なんて、電子より十分に大きいわけだが。
そもそも原子サイズの精度で位置が特定できても、
座標が特定できたとはいえない。
303:ご冗談でしょう?名無しさん
09/08/22 12:54:53
>>301
>>276>>291
>ちたーべべぐんぐ
の一体何がどう関係し得るかの説明も期待してるよw
304:ご冗談でしょう?名無しさん
09/08/22 13:09:00
>>303
振幅は有限
305:ご冗談でしょう?名無しさん
09/08/22 13:20:09
>>304
何の振幅が有限だからどう推論して>>300に引用した結論に到達するわけ?
俺様理論を喧伝したいなら説明くらいサボるなよw
306:ご冗談でしょう?名無しさん
09/08/22 14:27:10
>>305によれば相対論も一石の俺様理論w
307:ご冗談でしょう?名無しさん
09/08/22 14:34:38
>>305
電子は観測していないときでも有限の振幅で
ちたーべべぐんぐ
308:ご冗談でしょう?名無しさん
09/08/22 14:41:28
>>306
出た、得意技の議論のすり替えw
相対論を捻じ曲げて勝手に捏造した、実験で検証も反証も不可能な命題
>観測して粒子の位置座標を特定することは可能ならば、
>観測直前にその近傍に粒子が存在すると言えるだろう。
を俺様理論といっているだけで、相対論自体を否定してるわけでないのが分からんのか
早く説明してみろよ
面倒なら、相対論からお前の主張を導いた文献晒すのでも良いぞ
309:ご冗談でしょう?名無しさん
09/08/22 14:45:01
>>307
それ、実験で検証されたこと?w
観測してない時のことが実験で検証されるわけないわなw
観測してない時にZitterbewegungを持ち出すのは全くのナンセンス
310:ご冗談でしょう?名無しさん
09/08/22 15:01:00
>>308
時刻 t で電子の位置 r(t) を観測した。
このとき、不確定な位置 r(t-Δt) の取りうる値の範囲を求めよ。
311:ご冗談でしょう?名無しさん
09/08/22 15:02:51
>>309
>それ、実験で検証されたこと?w
ディラク方程式は実験で検証されていない、ということかw
312:ご冗談でしょう?名無しさん
09/08/22 16:26:13
>>310
そもそも「不確定な位置」の定義って何だよ
そんな用語をその用法で使ってある文献あるのか?
「時刻t-Δtに観測したら粒子が発見される可能性があった位置」とみなすならば、
それだけの情報ではr(t)-cΔt≦r(t-Δt)≦r(t)+cΔtになるが、
この不等式は観測していないときの系の様子を表すものでは全く無い
>>311
観測を行ったときの粒子の発見確率(第二量子化すれば発見される粒子の個数の期待値)はDirac方程式の解から予言されて、
確かにその予言は実験により検証されている
しかし、観測を行っていないときにまでどうなっているかは量子力学は何も予言しないし、
無論、観測を行っていないときの粒子の挙動に関する実験は原理的に不可能
313:ご冗談でしょう?名無しさん
09/08/22 18:39:36
>>312
なんだよ、相対論から r(t)-cΔt≦r(t-Δt)≦r(t)+cΔt つまり
時刻 t-Δt には高々 |cΔt| の近傍にいることがわかってるじゃないか。
それを受け入れられないのは、
「観測していないモノには言及しない」という解釈の方を
第一原理にしてるからだろw
だから
>観測を行っていないときにまでどうなっているかは量子力学は何も予言しないし、
こんなバカなことまで言ってしまう。
観測値を初期条件にして系の時間発展など計算できない、とでも思っているのかw
314:ご冗談でしょう?名無しさん
09/08/22 19:10:43
量子力学が
> 時刻 t-Δt には高々 |cΔt| の近傍にいること
を 「予言」 したと思えるというのはどういう精神構造ですか?
エロい人教えてください。
315:ご冗談でしょう?名無しさん
09/08/22 21:52:58
>>314
>量子力学が
「相対論から」と>>313には書いてあるが…w
「予言」したと言えないのは量子力学の「解釈」だろ。
316:ご冗談でしょう?名無しさん
09/08/22 22:41:08
観測時に必ず「粒子」だから、観測してないときも「粒子」に違いない。
↑
この考え方が如何に先入観丸出しの低脳カス思考かと言うことに気づかんのかな。
観測すること自体が、その物体に「粒子性」を強要するような影響を与えているかもしれんし。
逆に、「粒子」である状態のときのみ観測に引っ掛かるメカニズムかもしれんし。
「メガネをかけて見たら男に見えるのに、裸眼で見たなら女に見えた」
ってなカラクリが、量子物理の世界でならあり得るだろう。
もっと、脳みそ柔らかくせにゃ。