高校物理でわからない問題を質問するスレpart.4at SCI
高校物理でわからない問題を質問するスレpart.4 - 暇つぶし2ch499:ご冗談でしょう?名無しさん
09/04/15 21:14:26
URLリンク(uproda.2ch-library.com)
画像も変だったんで修正しました

500:ご冗談でしょう?名無しさん
09/04/15 21:32:58
おk
よく見たら下向き正だな。x<0か。
なら原点での伸びが-x(定量)で
君と同じように展開すると
座標軸の原点で、物体にはたらく力の合力Fは、
F=mg-k(-x)=k(x+mg/k)
X=x+mg/kとすると、
F=kX
このX(定量)は「位置-mg/kから自然長の位置までの変位」を
下向き正で取った負の値になる。

これをX=0とみなすのは「自然長と-mg/kの位置が一致」
つまり「静かに放した点(原点)より上にmg/kの位置に自然長がある」
要は「釣り合いの位置で静かに運動を開始したら静止したまま」という条件。
で、中心と端が一致するのは当たり前。

501:ご冗談でしょう?名無しさん
09/04/15 23:41:54
すいません、まだよくわからないんで、別の例を。
URLリンク(uproda.2ch-library.com)
位置xでの物体Pにはたらく力の合力Fは、
F=mg-kx=-k(x-mg/k)
X=x-mg/kとすると、
F=-kX
また、ここで、つり合いの位置でのばねにはたらく力を考えると、
mg=kx0∴mg/k=x0

ゆえに、物体PはX=0すなわち、x=mg/k=x0を振動中心とする単振動をする。
これはうまくいきます。

物理のエッセンスではこう書かれています。
URLリンク(uproda.2ch-library.com)



502:ご冗談でしょう?名無しさん
09/04/16 00:42:17
>>501
>>497 が言ってることだが、任意の時刻の物体の位置を表す(時間に依存して値が変化する)量に名前をつけていないのが混乱の原因。

503:ご冗談でしょう?名無しさん
09/04/16 00:55:14
>>501もおかしいですか?
実際にどうすればいいんですか?
一週間くらい考え続けて、もうどつぼにはまって抜け出せないです…

504:497
09/04/16 09:19:32
…君の>>499の図だと
「自然長から伸ばして運動を開始したときの
自然長の位置がx」であって
時間とともに変化する量では扱えないんだよ。

>>501の解法はその段階ではボロが出ていない。
これも放した位置(定量)と運動中の位置(変量)を
混同しているけど、この場合力のつり合いを求めるまでは
放した位置の条件を使わないから。

>>499であれ>>501であれ運動を始めたときの伸びを
dなりlなりで置いて、運動中の位置をxと置けば正しく表せる。

505:497
09/04/16 09:53:01
>>499の図、よく見るとマイナス入ってるな…
(なんというか、設定が読み取りにくい)
「自然長から伸ばして運動を開始したときの
自然長の位置が-x」ね。

>>500をその設定でもう一度書くと
原点での伸びがx(定量)で
座標軸の原点で、物体にはたらく力の合力Fは、
F=mg-kx=-k(x-mg/k)
X=x-mg/kとすると、F=-kX

ここまでは間違っていないが
このX(定量)は「原点でのばねの伸びからmg/kを引いた長さ」になる。
これをX=0とみなすのは「静かに放した点は伸びがmg/k」
という条件、で結論は同じ。

506:ご冗談でしょう?名無しさん
09/04/16 10:10:37
>>495
注目している世界

507:ご冗談でしょう?名無しさん
09/04/16 17:14:50
ちょいと重力について質問させてください
傾きがθのなめらかな斜面に質量mの物体をおきます
置いた点をA、斜面の終点をBとし、ABの高さをhとします(斜面がhではない)
ここで、Aから手を離した時の、B点での速度を求めたいのですが、これって自由落下で考えてはいけないのでしょうか?

B点での速度をvと置き、鉛直下方向に成分分解(vsinθ)して、
v^2-v0^2=2axに代入し、(vsinθ)^2-0^2=2ghで求まるかな…と思ったのですが回答はぜんぜん違いました
どこかでなだらかな斜面でも鉛直方向では自由落下が使える…と思い違いかもしれませんが、見た記憶があり気になって…

どこが違うのでしょうか?
力学的エネルギーでの位置エネルギーmghの保存となんか勘違いしちゃったのでしょうか?

一応間違った後違う手法でやったら合ってましたがどうしても気になったもので…
よろしくお願いいたします




508:ご冗談でしょう?名無しさん
09/04/16 17:26:58
斜面にめり込まないように支えている力を忘れている

509:ご冗談でしょう?名無しさん
09/04/16 17:50:04
ということは高校物理じゃできないんですかね…
ちょっと残念

510:ご冗談でしょう?名無しさん
09/04/16 17:58:42
いやいや高校物理で十分できる範囲内だぞ
というか基本レベルですらあると思うが
>>507を見る限り、公式をただ適用しただけで図を書いて現象を理解しようという気が見られないように思われる
図をかいてみたら?

511:ご冗談でしょう?名無しさん
09/04/16 18:00:48
あぁ、図は書いてるか・・・酔ってる頭で考えたからわけのわからんこと言ってしまった
もう変なこといいたくないから答えだけいっておくと、
エネルギー保存は成分関係なくスカラーで保存されるということだ

512:ご冗談でしょう?名無しさん
09/04/16 19:05:48
>なだらかな斜面でも鉛直方向では自由落下が使える

使えない。
水平に近いゆるやかな斜面を考えれば
どう見ても斜面上の加速度は
自由落下の加速度(重力加速度)より小さいだろ。
更に、その加速度の鉛直方向成分は小さい。

513:ご冗談でしょう?名無しさん
09/04/16 19:16:39
>>505
わかりました。>>496では原点があちこち動くことになりますね。
これで合ってますか?
URLリンク(uproda.2ch-library.com)
-xでPにはたらく力の合力Fは、
F=mg-k(x1-x)=-k(x1-x-mg/k)
ここで、-x0での力のつり合いより、
mg=k(x1-x0)∴mg/k=x1-x0
よって、F=-k(x1-x-x1+x0)=-k(-x+x0)
X=-x+x0とすると、F=-kX
ゆえに、物体PはX=0すなわち、x=x0を振動中心とする単振動をする。

マイナスはつけなければよかったです。

514:513
09/04/16 19:26:05
>>501をこの条件にするとどうでしょう?
URLリンク(uproda.2ch-library.com)

515:505
09/04/16 19:40:30
>>513
おk
基本的に物理では原点・軸・正方向をどう取っても
正しく処理すれば解くことができる。
ただ、変な設定にすると途中が煩雑で分かりにくくなる。

>>514
その設定で釣り合いの位置を求めるのなら
問題無い。振動の運動状態まで求めるなら
ある位置の座標を定める必要がある。

516:ご冗談でしょう?名無しさん
09/04/16 19:57:16
>>515
ありがとうございます。
釣り合いの位置とは振動中心のことですか?
また、振動の運動状態とは速さのことですか?

517:ご冗談でしょう?名無しさん
09/04/16 20:43:33
万有引力で引き合って太陽と地球がくっつかないのはなぜですか?

518:ご冗談でしょう?名無しさん
09/04/16 20:48:55
ぐるぐるまわっているからです。


519:ご冗談でしょう?名無しさん
09/04/16 20:49:48
>>517
落ちる前に移動するから。
右足が沈む前に左足を出せば空も飛べるはず。

520:ご冗談でしょう?名無しさん
09/04/16 20:53:59
a∝bかつa∝c⇒a∝bc
となりますが、
⇒a∝b+cでだめなのはなぜでしょう?
片方を隠せばもう片方に比例することになりませんか?

521:ご冗談でしょう?名無しさん
09/04/16 21:09:20
>>516
釣り合いの位置が振動中心となる。

運動状態は各時刻における
位置・速度・加速度などのこと。

522:ご冗談でしょう?名無しさん
09/04/16 21:51:53
>>520
a∝bかつa∝c のとき a∝b+c にならないって教わったの?

523:ご冗談でしょう?名無しさん
09/04/16 21:57:30
習う習わないじゃなくてもう頭が悪いっつーかセンスなさすぎって世界だと思うんだが・・・
それって教わらないとわからないことか?

524:ご冗談でしょう?名無しさん
09/04/16 22:09:19
>>520
比例というのは、一次関数のうち、グラフが原点を通るもののことね。

a∝b+cだと、原点を通ってないじゃない。

525:ご冗談でしょう?名無しさん
09/04/16 22:51:26
a∝bかつa∝c⇒a∝(b+c)のつもりじゃないの

526:525
09/04/16 22:54:02
あっ、ダメか。

527:ご冗談でしょう?名無しさん
09/04/16 23:07:35
a, b, c を変数、X, Y を定数として、
b=X*a かつ c=Y*a なら b+c=(X+Y)*a で b*c=X*Y*a^2 になるんだけど、
こういうのは
b∝a かつ c∝a のとき (b+c)∝a で (b*c)∝a^2 と言うんじゃないかなあ

528:ご冗談でしょう?名無しさん
09/04/16 23:09:34
>>520
まず最初っから間違ってるだろ
>a∝bかつa∝c⇒a∝bc

>>525
合ってんじゃないの

529:ご冗談でしょう?名無しさん
09/04/17 01:28:16 g2emNLwo
物理初心者です。
モンキーハンティングがわかりません。
原点Oから水平距離lだけ離れた地点を点Bとし、点Bの真上の高さhのところを点Aとする。
原点Oから小物体Mを初速度νで点Aに向かって投げると同時に、点Aから小物体Nを自由落下させる。
そうすると初速度の大小に関わらず(ただし、Mが線分AB上をノーバウンドで通過する範囲)MとNは線分AB上で必ずぶつかりますよね。
何故ですか?

530:ご冗談でしょう?名無しさん
09/04/17 01:49:02
続き

教科書ガイドには相対速度を考えて、Nから見たMの運動が等速直線運動だからみたいな感じで書いてあるんですが。
何故等速直線運動なのか?何故必ずぶつかるのか?Mを投げる時、点Aの真上や真下に向かって投げるとNにぶつからないのか?がわかりません。
よろしくお願いします。

531:ご冗談でしょう?名無しさん
09/04/17 02:18:19 jGxXiKtS
>>530
>何故等速直線運動なのか

MとNの加速度が等しいから


仮に無重力空間で行なえば、玉は直線運動するからヒットするのは当たり前だよね

では次に、この実験を空中の部屋の中(エレベーター内)で行い、
玉を打ち出した瞬間に部屋全体が自由落下するような場合を考えてみれ

部屋の中の人から見れば無重力での射撃だから、当然ヒットする
部屋の外の人から見れば、これがつまりモンキーハンティング

これでわかる?

532:ご冗談でしょう?名無しさん
09/04/17 03:03:53
回答ありがとうございます。
無重力だと小物体Nが落下しないで点Aに固定されていて、小物体Mも重力がないので、下に落ちてこないで、Nに一直線に向かうから、必ず当たるということですね。


ただ、『加速度が同じだから』というのが良くわかりません。


あと『MがNにぶつかるのは、MをNにむかって投げた時のみ』ということなんでしょうか?
ということは、Mを適当に投げてNにぶつかったら、MはたまたまNにむかって投げられていたということでしょうか?(そうじゃないと無重力ではMがNにぶつからないですよね?)

よろしくお願いします。

533:ご冗談でしょう?名無しさん
09/04/17 12:27:01 a/PUWaSz
電荷Q1とQ2は普通に足せますか?

534:ご冗談でしょう?名無しさん
09/04/17 12:30:57
>>533
死ね

535:ご冗談でしょう?名無しさん
09/04/17 12:43:19
マルチ氏ねって書かないと。

536:ご冗談でしょう?名無しさん
09/04/17 12:43:41
>>535
じゃあ氏ね

537:ご冗談でしょう?名無しさん
09/04/17 12:54:16
メコスジ物理でわからない悶題を膣悶するスレpart.69


538:ご冗談でしょう?名無しさん
09/04/17 19:27:40
天井に固定された滑車に糸を巻き付きて、糸の両端におもりを付けたとき、おもりにはたらく糸の張力が等しくなるのはなぜですか?
幾何的に証明できますか?

539:ご冗談でしょう?名無しさん
09/04/17 19:50:23
ありがとうございました。ようやく抜け出しました。

540:539
09/04/17 19:52:15
すいません、>>539>>521へです。

541:ご冗談でしょう?名無しさん
09/04/17 22:31:15
URLリンク(www.dotup.org)
よくある問題で、慣性力を使えば簡単ですが、
地面の人から運動方程式を立てて求めるにはどうしたらよいでしょうか?

542:ご冗談でしょう?名無しさん
09/04/17 23:09:24
>>541
Pの大きさは考えるけどQは大きさ無視かな?

Qの座標を(x,y)、B点を(X,0)とかおいてみて、
x、y、Xそれぞれの運動方程式
Pの力の釣り合いの式
あとは、Qの相対加速度が斜面の接線方向を向いているということを表す式(θ一定ならyをx-Xのtanで表してもいい)
を、書いて解く。

xとXの第二次導関数が求まればいいんじゃない。
式5つあるからx、y、X、P・Qそれぞれの垂直抗力全部求まるけど。

543:ご冗談でしょう?名無しさん
09/04/18 14:37:46
>>542
ありがとうございます。
すごく手間が掛かりますね。慣性力は偉大ですね。

544:ご冗談でしょう?名無しさん
09/04/18 19:43:29
長さ0.20mの試験管をさかさにして水中に沈めたとき、水は管口から8.0×10^-2
のところまで浸入した。管口までの水の深さは何mか。ただし、大気圧を
1.01×10^5Paとし、温度は一定とする。

ボイルシャルルを使うのかなと思うのですが
式が立てられません。
お願いします。

545:ご冗談でしょう?名無しさん
09/04/18 19:48:44
>>544
ところどころ単位が書いていない。
ここで変化している要素を書き出せば自ずと使う公式がわかるはず。

546:ご冗談でしょう?名無しさん
09/04/18 19:53:51
>>水は管口から8.0×10^-2m

です。すいません。
水中に入れる前→入れる後の変化を考えるんですよね?

547:ご冗談でしょう?名無しさん
09/04/18 19:55:43
>>544
たぶん、試験管内の空気の温度が一定と仮定してもいいのでしょう。

はじめ20cmの空気柱の長さが12cmになったのだから、
体積は12/20倍になった。温度一定なら、圧力と体積は反比例するから
圧力は20/12倍になったわけだ。
あとは、水圧が大気圧の20/12倍になる深さを求めたらいいだけ。

548:ご冗談でしょう?名無しさん
09/04/18 19:57:49
>>546
つまりそういうこと。
入れる前→入れた後で変化してる要素を見れば使う公式がわかるはず。
これ以上言うと答えになるからあとは頑張れ

549:ご冗談でしょう?名無しさん
09/04/18 20:01:55
>>547
そこまで言ったら殆ど答えだろ。
>>1を何回も読み返せ。

550:ご冗談でしょう?名無しさん
09/04/18 20:08:28
>>547-549
分かりました!ありがとうございました。

551:ご冗談でしょう?名無しさん
09/04/18 20:10:22
>>549
いや、問題文が少し不親切だと感じた。
ほかにもっと勉強すべきこと、考えて理解すべきことはある。

たとえば、試験管内の空気の圧力が、試験管の下端での水圧に
等しいとおいていいのはなぜか、とかね。

この問題はたぶん、圧力をつかって、釣り合いの式をたてるのが目標。
気体の性質で混乱させるのはかわいそう。



552:ご冗談でしょう?名無しさん
09/04/19 00:05:16
三角プリズムを用いて白色光を分散させたとき、屈折率が最も大きな色の光は何色か。
①赤②黄③緑④青⑤紫

この問題はどうやって判断すればよいのですか?

553:ご冗談でしょう?名無しさん
09/04/19 00:09:30
>>552
虹を見たことある?

554:ご冗談でしょう?名無しさん
09/04/19 01:57:21
>>553
波長が小さいほど屈折率が大きくなるんですよね?
なぜそうなるかというのは高校物理では説明できませんよね?

555:ご冗談でしょう?名無しさん
09/04/19 02:06:23
>>554
ヒントは光は波動と粒子の二面性を持っているということ
あとは頭の回転が良ければ高校の知識で十分解決できる

556:ご冗談でしょう?名無しさん
09/04/19 09:20:45
>>555
そうなの?
可視光より広い波長範囲で考えれば
波長に対して屈折率は単調減少じゃないと思うけど。
それもわかる?

557:ご冗談でしょう?名無しさん
09/04/19 16:31:55
>>556
問題では可視光の範囲で考えることだからそれは関係ない。

まずなぜ光が屈折するのかという所から理解してその後キャリアを理解すれば、
波動と粒子の二面性だけで説明できると思うのだが。

558:ご冗談でしょう?名無しさん
09/04/19 17:00:37
波動と粒子の二面性っていうか
ただの高校物理の波の問題だろ

559:552
09/04/19 17:09:46
皆さんありがとうございます。
可視光はどの色でも振動数は変わらないんですか?

560:ご冗談でしょう?名無しさん
09/04/19 17:40:14
>>559
教科書の光についての部分を何回も読み返せ

561:ご冗談でしょう?名無しさん
09/04/19 17:54:36
は?

562:ご冗談でしょう?名無しさん
09/04/19 18:02:42
>>561
ひ?

563:ご冗談でしょう?名無しさん
09/04/19 18:11:04
ふしぎな国の

564:ご冗談でしょう?名無しさん
09/04/19 18:18:07
ナディア

565:ご冗談でしょう?名無しさん
09/04/19 18:28:08 DWlTRlLy
ドップラー効果の問題なんですが
音源は固定されていて観測者は動くのですが
観測者の進行方向が観測者→音源の方向と
θの角度をなすように移動する場合は
どういう風に式を立てればいいのでしょうか?
図に描いて考えてるのですが
ドップラー効果の式までたどり着けません
どなたかお願いします

566:ご冗談でしょう?名無しさん
09/04/19 18:29:20
サインとコサインってしってる?
ここまで言っても分からない?

567:ご冗談でしょう?名無しさん
09/04/19 18:30:01 DWlTRlLy
連投すみません
上の補足です
与えられてるのは観測者の速度vと
音速Vに音源が発する振動数fで
観測者に届いた音波の振動数を求めよという問題です

568:ご冗談でしょう?名無しさん
09/04/19 18:31:34 DWlTRlLy
サインコサイン使うのは分かるんですが・・・
二等辺三角形を使って考えればいとおもうのですが
そうするとうまくサインコサインを使えないし

569:ご冗談でしょう?名無しさん
09/04/19 18:57:53 DWlTRlLy
すみません
問題文に何気なく書いてあった近似条件を使えば
何とかなりそうです
スレ汚し申し訳ない
回答してくださった方ありがとう御座いました

570:ご冗談でしょう?名無しさん
09/04/19 21:06:17 BZLzIYBK
点電荷とは何ですか?説明してください

571:ご冗談でしょう?名無しさん
09/04/19 21:14:29
>>570
>>1
> ・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。

572:ご冗談でしょう?名無しさん
09/04/19 21:23:27 BZLzIYBK
これって考えて分かるものなんですか?


573:ご冗談でしょう?名無しさん
09/04/19 21:26:09
>>572
じゃあググれ

574:ご冗談でしょう?名無しさん
09/04/19 21:40:11
「調べても○○の所が理解できません」とか
「~~という意味ですか?」とかならともかく、
その聞き方だと「自分で調べるのめんどい」
っつー姿勢に見えるんだよな

575:ご冗談でしょう?名無しさん
09/04/19 22:10:29
>>570
ρδ(r)

576:ご冗談でしょう?名無しさん
09/04/19 22:17:25
>>572
考えているうちにノーベル賞もらっちゃった人も居るぐらいだから
何事もやってみるもんだとは思う。

577:ご冗談でしょう?名無しさん
09/04/20 00:35:52
風が吹いているときのドップラー効果の問題なんですが、
風が吹いてるとき、音の伝わる速さが変わるから、
観測者が観測する音の振動数も変わりますか?

578:ご冗談でしょう?名無しさん
09/04/20 00:49:42
音速がV、観測者方向に音源の速度がv、観測者方向に風速がu
     V
f’=------×f
   V-v-u

579:ご冗談でしょう?名無しさん
09/04/20 12:04:36
それだと音源が動いてなくても(v=0)
風が吹くだけで音程が変わるぞw

580:578
09/04/20 14:10:10
ゴメン。間違った。音速がV→V+uになるんだった。
    V+u
f’=-------×f
   (V+u)-v


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch