09/04/04 00:32:14 ARwei6CG
―――――――― ←円盤
回転軸→ |←― R ―→■
―――――――――― ←床
重力加速度をgとし、円盤の質量や空気抵抗は無視できるものとする。
質量Mの物体■を回転軸からRの距離にある点に接着させた円盤をひっくり返して、円盤が床に対して平行になるように■を床に接地させて、
円盤を初度速Vで回転させたところ(つまり■はレコード針のような状態)、円盤の回転速度は一様に減速していき、ちょうどN回転した地点で静止した。
この結果だけから■と床との間の摩擦係数μを求めるには、■の総走行距離はN*(2*π*R)で、摩擦力は常に μ*M*g なので、
力学的エネルギー保存の法則より、(μ*M*g)*N*(2*π*R)=(1/2)*M*V^2 ∴μ=v^2/(4*π*N*g*R)でよろしいでしょうか?
それとも、他に必要な数値があって、これだけではμは求められないんでしょうか?
よろしくお願いします。