10/05/23 20:47:11
>>367
>-1≦2a/(a^2 +1)≦1になぜなるのかわかりません。
確かに、この参考書見ても、わからんわなー。ちょとこの解答不親切。というか、記述式の試験でいきなりこう書いたら、減点されんじゃないかな?
増減表かいてもいいし、あるいは↓なかんじ。
i)a=0のとき、2a/(a^2 + 1) = 0
ii)a≠0のとき、
2a/(a^2 + 1) = 2 /{a + (1/a)}なので・・・(分母と分子をaで割った)
ii)-あ) a>0のとき、「相加平均≧相乗平均」の関係から、a + (1/a)≧2 だから、 0 < 2a/(a^2 + 1)≦1
ii)-い) a<0のとき、(-a)>0だから、「相加平均≧相乗平均」の関係から、{(-a) + 1/(-a)}≧2 だから、{a + (1/a)} ≦ -2 だから、-1 ≦ 2a/(a^2 + 1) < 0
以上あわせて、「-1≦2a/(a^2 +1)≦1」(※ 分子から文字を消しさるこういうやりかたは、結構使える)
====
まぁ、自分なら、ii)-あ)と ii)-い)をあわせて、
-----------------------------------
(a≠0のとき) 「相加平均≧相乗平均」の関係から、|a| + (1/|a|)≧2
よって、a + (1/a)≧2 または {a + (1/a)} ≦ -2
よって、-1≦2a/(a^2 +1)≦1(ただし、2a/(a^2 +1)≠0)
----------------------------------- ってやるけどね。