10/05/23 20:02:10
高2数Ⅲの問題です。
数列{an}に対して、lim{(a[n]+5)/(2*a[n]+1)}=3であるとき、lim(a[n])を求めよ
n→∞ n→∞
という問題で、
b[n]=(a[n]+5)/(2*a[n]+1)とおき、
b[n]*(2*a[n]+1)=a[n]+5
展開して移項
2*a[n]*b[n]-a[n]=-b[n]+5
a[n]*(2*b[n]-1)=-b[n]+5
a[n]=(-b[n]+5)/(2*b[n]-1)
ここまでは分かるのですが、ここから先b[n]=3を代入するだけだと思ったら、
2*b[n]≠1の証明をしなければいけない
と言われました。
分母が0になってはいけないから、という理由はわかるのですが、
b[n]は3だと条件で出ていますし、なによりb[n]≠1の証明の仕方が分かりません。
教えてください、お願いします。