10/05/23 05:14:26
>>310
一つずつ考える
まず最初の「全てのxについてP(x)が成り立つ」のを否定するのは
「p(x)が成り立たないxが一つでもあればいい」つまり「P(x)ではないxが(少なくとも1つ)存在する」
よって¬(∀x:P(x))⇔∃x:¬P(x)
次にpかつqの否定を考える
¬(p∧q)と¬pまたは¬qは同値だから(真理表書けばわかる)
¬(p∧q)⇔¬p∨¬q
また、f(x)≧n≧g(x)はf(x)≧nかつn≧g(x)だから
「∀x∃n:f(x)≧n≧g(x)」の否定は
¬(∀x∃n:f(x)≧n≧g(x))⇔∃x∀n:¬(f(x)≧n≧g(x))
⇔∀x∃n:(f(x)<n)∨(n<g(x))