10/05/15 00:17:10
>>856
お前恥ずかしいからもうレスすんな
858:132人目の素数さん
10/05/15 00:18:25
近年の教育見直しの立場から
以前の課程へ戻そうとやっきになっている
また中学生で連立方程式・連立不等式を学習することになるのかもしれない
859:132人目の素数さん
10/05/15 00:20:50
>>852
前の課程じゃ中3で論理と集合やってたから
860:132人目の素数さん
10/05/15 00:23:40
>>858 え、今義務教育で連立方程式やってないの?
861:132人目の素数さん
10/05/15 01:09:56
>>854
x,yが3つの不等式
3x-5y≧-16 3x-y≦4 x+y≧0を満たすとき
2x+5yの最大値、最小値を求めよ
で、図示すると頂点(-2,2)(1,-1)(3,5)の三角形の内側が領域になって
2x+5y=kとおくとこの直線は傾き-2/5 y切片k/5 って変形していって
x=3 y=5のとき最大値 11
X=1 y=-1のとき最小値 -3 となるけど
この3つの頂点の内
どれが最大値,最小値かを座標の値を代入せずに判断する方法はありますか?
>>856は>>857を見た感じ間違ってる?
862:132人目の素数さん
10/05/15 01:47:10
なんでサクシードってあんなに解説不十分なの?
2年間なんとか足りない部分を自分で考えたり先生に質問してきたりしたけど
3Cが鬼畜すぎる…
こんなんで受験乗り切れるのかね
863:132人目の素数さん
10/05/15 02:07:03
チャート使え
864:132人目の素数さん
10/05/15 02:28:43
>>824 (3)だけ
αが正の数でn=1,2,3,…に対して x[n]<2-α^n が成り立つとする。
n≦i のとき x[n]≦x[i]<2 だから
2-x[i+1] = (2-x[i])/{2+√(x[i]+2)} ≦ (2-x[i])/{2+√(x[n]+2)}
が成り立つ。よって n<k のとき
2-x[k] ≦ (2-x[n]){2+√(x[n]+2)}^(n-k)
が成り立つ。仮定により α^k<2-x[k] も成り立つので
α^k < (2-x[n]){2+√(x[n]+2)}^(n-k)
が成り立つ。この両辺を(1/k)乗してk→∞とすると
α≦1/{2+√(x[n]+2)} が得られる。更にここでn→∞とすると
α≦1/4が得られる。これと(2)よりαの最大値は1/4。
865:132人目の素数さん
10/05/15 06:06:26
>>829
ii
ω