10/05/05 04:04:30
>>159
微分で解いてみたらa=√2/4になった
167:132人目の素数さん
10/05/05 04:18:19
>>166
同じく
3√2/8ってなんだろ…
168:数学好きの一般人
10/05/05 05:17:08
>>148 チミが悩んでいることはよく解るよw。数学って悩みだすと止まんなく
なることあるよね。
てか今の数Ⅲって積分で曲線の長さ求めるってやつやらないの?
俺のときやったんだけど。今の参考書のってない。
169:132人目の素数さん
10/05/05 06:31:36
ヲッサンは黙ってろ
170:132人目の素数さん
10/05/05 08:15:36
y-b=f(x-a)でy=g(x)だよ。b,aをつっこんだときにyはもう平行移動されている。
あたらしいyだよ。
171:132人目の素数さん
10/05/05 08:26:24
>>157
(1)の式は関数g(x)と関数f(x)の値の関係を示しているんだよ。
yが出てこないと安心できないのか?
y=g(x)できまる(x,y)の全体が関数g(x)のグラフ・・・(*)
y=f(x)で決まる(x,y)の全体が関数f(x)のグラフ・・・(**)
そこで(1)の関係式があるから、グラフ(**)をy軸方向にb平行移動したものがグラフ(*)
ここまで書いた中に現れている5つのyのそれぞれはどういう意味だ?
同じ y はどれとどれだ?
172:132人目の素数さん
10/05/05 08:36:30
>51
ぱっとみだけど
AnBの中点でそれに直交する底辺を持つ三角形が毎回、頂点の数だけ切り落とされる。
収束するのなら円になるのでは?
173:132人目の素数さん
10/05/05 09:17:43
>>172
頂点A_kがBに重なるように折ったときの折り目(線分BA_kの垂直2等分線)は平面を二つの半平面に分割する。
そのうち、Bを含む方を記号<A_k>で表すことにすると
X=<A_1>∩<A_2>∩・・・∩<A_n>が今問題になっている図形。
ちょっと大きめのnに対して正n角形を書いてみてみればわかるけど、
BA_kの中点が<BA_(k-1)>に含まれないようなkが現れてくる。
(隣りの折り目の外側に出てしまう。つまりはXの外部に取り残されるということ)
だから
>AnBの中点でそれに直交する底辺を持つ三角形が毎回、頂点の数だけ切り落とされる。
のはその通りなのだけど、そこからそれらの中点を結んだ円に収束すると結論づけることはできない。
174:158
10/05/05 09:23:06
数学板ですら未だに答えが出ないという…w
受験報告で慶医受けた人の体験が2つ載ってて、
一人はこの大問(1)から解けず0点。
もう一人は報告によれば、ほぼ全問正解っぽいけど、
この問題に関して「問題ミス?簡単すぎ」というような事を書いており、
おそらく問題の意図すら間違えた様子…
>>163
何かその答えも解いてる最中出た気がする…けど答えは違うんですよね。
続きを書きます
175:158
10/05/05 09:26:57
↑の続きです。
>>166-167
a=√2/4が、「垂線の足」に当たるんですよね…。
直角に降ろす場合が一番短いだろっていう。でも答えは違うっていう…。
どうすれば正答が出るんでしょうか…wどこが違うんでしょうかw
176:132人目の素数さん
10/05/05 09:36:14
>>162
問題文を一字一句正確に書き写してくれないかな。
177:132人目の素数さん
10/05/05 10:02:26
でも点が折り込めなくなるのは円になるぐらいしかないぞ。折っても折っても同じ
図形に戻るって。
178:158
10/05/05 10:04:02
URLリンク(koideai.com)
↑に貼りました 河合塾サイトより。
179:132人目の素数さん
10/05/05 10:23:32
A:(a,0)
Q:2x^2-y^2=1
P:y=x
R=AP+PQ
f=AP^2=(x-a)^2+x^2
g=PQ^2=(c-x)^2+(x+1-2c^2)^2
fx=gx=2(x-a)+2x=2(c-x)+2(x+1-2c^2)
8x=2a+2c+2-4c^2
x=.25a+.5c+.5-c^2
Q=(1,1),c=1
x=.25a
180:132人目の素数さん
10/05/05 10:34:47
>>178
Aは定点、Qは双曲線上の動点、このとき、まずQを固定してy=x上の点Pをいろいろに動かしたときの
AP+PQの最小値がr(Q)
つぎに、Qを動かしてr(Q)を最小にするQをもとめる。
このときQ(3/4,√(2)/4)となるのは、aがどんな値のときか、という問題だね。
Qが与えられたときにr(Q)に最小値を与えるaを求める問題ではない。
181:132人目の素数さん
10/05/05 10:40:19
>>177
図形が収束に近づいているときは、折り目の殆どは、楕円の外、ということなんだろうね。
(どの折り目も、BA_kの中点の軌跡である円の接線にはなっている)
182:132人目の素数さん
10/05/05 10:56:51
>>178
なるほどね
>>158の書き方だとQ,Pを定めた後にAを取っているからaは自由変数と取れるけど
点Aは初めに与えられた定点なのでその後の条件で制約を受ける
183:132人目の素数さん
10/05/05 11:02:11
APとQPの最短を個別に求めて、線形で重ね合わせればいいだけ。
pはパラメーター表示で微分する。
184:132人目の素数さん
10/05/05 11:37:25
>>174
> 数学板ですら未だに答えが出ないという…w
問題を正確に書き写さなければ誰も真面目には取り組まず、質問は無視されるという良い例だった。
185:132人目の素数さん
10/05/05 12:33:40
>>178
問題の意図を間違えてるのは>>159
186:132人目の素数さん
10/05/05 12:47:18
空間のベクトル方程式で
2 x + 3 y - 4 z - 5 = 0
で法線ベクトルは[2,3,-4]ですが方向ベクトルはどうやって求めるのでしょうか。
よろしくお願いします。
187:132人目の素数さん
10/05/05 12:53:08
>>186
方向ベクトルって?
188:132人目の素数さん
10/05/05 12:55:21
>>186
何の方程式かわかってる?
189:132人目の素数さん
10/05/05 12:57:02
>>186
平面の方向を表示するのに法線ベクトル以外になにかあるのか?
190:132人目の素数さん
10/05/05 13:03:31
モンティホール問題の原型は、「3囚人問題(Three prisoners problem)」といい、1950年頃に生まれたようです。
作者不詳のパラドックスとして知られています。
3囚人問題は、問題自体は簡単なように見えるものの、確率計算の結果が人間の直感と全く異なるため、これまで多くの研究がなされています。
何故、人間は、このような簡単なはずの確率計算を間違えてしまうのか?
認知心理学者や統計学者のあいだでかなり議論になったものです。
(あとに、いくつかの文献を載せておきます。)
もっとも、ゲームショー"Let's make a deal"のプロデューサーや司会のモンティはこの「3囚人問題」の存在を全く知らなかったものと思われます。
マリリン・ボス・サバントも3囚人問題自体は知らなかったようです。
マリリン・ボス・サバントは、パレードという米国雑誌にコラムを持っていました。
モンティホール問題として大騒ぎになったのは、1990年9月9日に、Let's make a dealについての質問に答えたことがきっかけです。
不思議なのは、投書した大勢の数学者も「3囚人問題」を知らなかったことですね。
知っていたら、モンティホール問題と同型だということは明らかなので投書などしなかったでしょうから。
ちなみに、放浪の天才数学者と言われるポール・エルディシュも知らなかったようです。
ポール・ホフマン著 平石律子訳「放浪の天才数学者エルディシュ」,草思社,2000年4月5日発行の252頁~256頁をご参照ください。
191:132人目の素数さん
10/05/05 13:04:43
<参考文献>
3囚人問題については、実に多くの著書、論説、学会発表がありますが、その一部を示します。特に、市川らにより精力的に研究されています。
(でも、日本の研究成果は外国にはあまり伝わっていなかったようですね。)
最後に挙げた「確率の理解を探る-3囚人問題とその周辺-」という単行本は、モンティホール問題の詳細な解説(種明かし)ともいえますので、是非一読をお奨めします。
Lindley,D.V.(1971) Making Decisions,John Wiley
繁枡算男(1985) 「ベイズ統計入門」,東京大学出版会
市川伸一・下条信輔(1986)「直感的推論における"主観的定理":"3囚人の問題"の解決過程の分析から」,日本認知科学会第3回大会発表論文集,14
繁枡算男(1987)「3囚人問題」の具体化について」,日本心理学会第51回大会発表論文集,337
井原二郎(1987)「「3囚人問題」に関する直感の数理モデル」,日本認知科学会第4回大会発表論文集,24-25
佐伯胖(1987)「「3囚人問題」に関する視点論的分析」,日本認知科学会第4回大会発表論文集,26-27
竹市博臣(1988)「3囚人問題の認知構造」,日本認知科学会第5回大会発表論文集,90-91
市川伸一(1988)「3囚人問題の解決と理解の過程をめぐって」,日本認知科学会編『認知科学の発展』,講談社,Vol.1,1-32
守一雄(1988)「「3囚人問題」はなぜ難しいか」,信州大学教育学部紀要,第62号,45-50
市川伸一(1989)「3囚人問題の困難性-抽象記述による解明-」日本認知科学会R&I研究分科会資料,No.88-2,pp.1-12
Ichikawa,S.(1989) The role of isomorphic schematic representation in the comprehension of counterintuitive Bayesian problems. Journal of Mathematical Behavior,8,269-281
伊東裕司(1991)「3囚人問題の解決における頻度モデルの役割」,日本認知科学会テクニカルレポート,No.19
市川伸一(1997),「確率の理解を探る-3囚人問題とその周辺-」共立出版
192:132人目の素数さん
10/05/05 13:15:25
186ですがお騒がせしたようですが平面の交線の問題と勘違いしてました。
193:132人目の素数さん
10/05/05 13:19:02
ちょっとお願いします。
x²-4x+3≦0をみたすすべての実数に対して
2x²+(a+1)x-3<0 がなりたつときaの値の範囲を…
って問題なんですが、
最初の不等式が1≦x≦3
までは分かったんですけど、もう一方の不等式がうまくいきません。
どうするんでしょうか?
お願いします。。
194:132人目の素数さん
10/05/05 13:32:07
>>193
y=2x^2 +(a+1)x -3 のグラフがどういう形になるか考える
195:132人目の素数さん
10/05/05 13:35:11
>>193
2次関数 y=2x^2+(a+1)x-3 が 区間 1≦x≦3 で負になる(⇔ 1≦x≦3でグラフがx軸の下になる)条件を求める。
196:132人目の素数さん
10/05/05 13:52:07
>>194-195
ありがとうございます!
197:132人目の素数さん
10/05/05 15:53:33
>>172
線分BA_kの垂直二等分線をL_kとおいて
L_kと直線OA_kの交点をP_kとおくと
|OP_k|+|BP_k| = |OP_k|+|AP_k| = |OA_k| = 2
だからP_k達は全てひとつの楕円の周上にある
しかもL_k上でP_k以外の点Pでは
|OP|+|BP| = |OP|+|AP| > |OA| = 2
となるからL_kとこの楕円の共有点はP_kのみ
つまりL_kはこの楕円にP_kで接している
198:167
10/05/05 16:17:47
Aは定点だったのか
そりゃ問題が違うんだから答えが違っててもおかしくないはずだ
まったく…
199:132人目の素数さん
10/05/05 16:26:58
>>197
うん、鮮やか
200:132人目の素数さん
10/05/05 17:29:10
>>158
特別なテクニックを使うわけでもなく a=(3√2)/8 になったよ
Q を y=x に関して折り返した点を Q' として、AQ' の最小値を計算しただけ
(ただの二次式だから、微分なり平方完成なりで適当に)
201:132人目の素数さん
10/05/05 18:16:45
んな、傷口に塩を塗り込まんでもいいのに
202:132人目の素数さん
10/05/05 19:14:04
(x+1)(x-1)(x^2+x+1)(x^2-x+1)
どこを置き換えれば簡単になるでしょうか・・・・・・
203:132人目の素数さん
10/05/05 19:17:03
その式を何したいの?
204:132人目の素数さん
10/05/05 19:18:00
>>203
簡単にしたいって言ってるだろ
205:132人目の素数さん
10/05/05 19:18:37
>>202
1と4、2と3番目をまず掛け合わせると楽
206:132人目の素数さん
10/05/05 19:23:45
>>202 x^6-1を因数分解した結果がその式だが?
207:132人目の素数さん
10/05/05 19:27:46
>>205
すごく簡単になりました!ありがとうございました!
208:132人目の素数さん
10/05/05 19:46:18
>>204
あんたバカ?
209:132人目の素数さん
10/05/05 20:32:52
>178
A、Qを焦点とする楕円でy=xに接するポイントPが最小だよ。
210:132人目の素数さん
10/05/05 21:07:34
高2です。数Ⅱ教えてください。
次の曲線の与えられた点を通る接線の方程式とその接点の座標を求めよ。
y=x^2+3x+4 (0,0)
ちなみに答えは
y=7x,(2,14)
y=-x,(-2,2)
です。
基本の問題なのに聞いてすみません。
211:132人目の素数さん
10/05/05 21:07:51
AQPが直線でy=xと直交するときが最小です。楕円を微分してy'=1,y=xをほりこむだけ。
212:132人目の素数さん
10/05/05 21:18:03
>>210
接点の座標を(a,a^2+3a+4)とでも置いて、その点における接線の方程式を求める。
そしてその接線が点(0,0)を通る条件を考える。
213:132人目の素数さん
10/05/05 21:18:07
直線の方程式を適当に設定してやって、判別式=0
214:132人目の素数さん
10/05/05 21:27:34
>>212>>213
できました
ありがとうございました
215:132人目の素数さん
10/05/05 21:33:22
(0,0)-(x,y=x^2+3x+4)
y=((a^2+3a+4)/a)x
dy/da=2a+3=(a^2+3a+4)/a
a^2=4
a=+/-2
y=((a^2+3a+4)/a)x=7x,-x
216:132人目の素数さん
10/05/05 21:56:59
『三角形OABがある。OP↑=α↑OA+β↑OBで表せる点Pの集合は、
α/2+β/3=1, α≧0,β≧0
のときどうなるか』
という問題の解答が、
『↑OP=α/2(2↑OA)+β/3(3↑OB)
そこで、2↑OA=↑OC,3↑OB=↑ODとおくと、
↑OP=【略します】
=↑OD+α/2↑DC(0≦α/2≦1)
であるから、点Pの集合は線分CDである。』
となっているのですが、解答の二行目以降はどうしてひつようなのでしょうか?
『↑OP=α/2(2↑OA)+β/3(3↑OB)
α/2+β/3=1なので、二倍のOAと三倍のOBのさきっちょの線分である。』(答案にかくときはちゃんと図をつかって表現します)
だけではなぜいけないのでしょうか?
よろしくおねがいします
217:132人目の素数さん
10/05/05 22:03:17
>>216
>二倍のOAと三倍のOBのさきっちょの線分である
の意味が伝わらないからいけないんだと思うお
そんなこと答案に書くのかお?
218: ◆27Tn7FHaVY
10/05/05 22:08:51
だ尾弁きんもー★
219:132人目の素数さん
10/05/05 22:10:17
>>217
もちろん答案にかくときはちゃんと図をつかったりして表現しますってば!
この問題は、模試等でなく問題集の問題で、問題集にのってる解答では>>216にあるようになっているのですが、
『そこで、2↑OA=↑OC,3↑OB=↑ODとおくと~=↑OP=↑OD+α/2↑DC(0≦α/2≦1)であるから』
の存在理由がわからないです。この部分は書かないと減点になるのでしょうか?なるのならばなぜですか?
よろしくおねがいします
220:132人目の素数さん
10/05/05 22:10:28
パップスギュルダンの定理は大学入試では使わないほうが良いと先生に言われました。
コーシーシュワルツの不等式は教科書には載ってませんが、参考書には載っています。
教科書に載っていない定理を使うのはいけないのでしょうか?
221:132人目の素数さん
10/05/05 22:18:25
>>219
>二倍のOAと三倍のOBのさきっちょの線分
表現が舌足らずなのには目を瞑っても伸ばす方向はハッキリと書いておくべきだろう。
線分OAをAの側に延長して2倍の長さになる点と線分OBをBの側に延長して3倍の長さになる点を結んだ線分
ま、しかし、ここまで書くなら普通に216のように書いておいたほうがらくだろう。
伸ばす方向と伸ばす大きさを表せるのがベクトル表示だからね。
222:132人目の素数さん
10/05/05 22:18:50
>>220
高校生のレベルで簡単に説明出来るかの違いじゃないかな
コーシーシュワルツはベクトルの内積でいいわけだし、式の説明自体は簡単。
223:132人目の素数さん
10/05/05 22:20:33
いけなくはないけど、採点基準もわからないし、採点者が大学範囲をはねる人だとヤバイから先生は使わないほうがいいって言ったと思う
224:132人目の素数さん
10/05/05 22:24:08
>>222
ベクトルの証明は3つまでだから入試ではあんまり使えなくね
225:132人目の素数さん
10/05/05 22:26:52
定理使いたいなら証明も書いちゃえばいいだけのような
もちろん大学入試なら高校レベルだけで論理を構成しなきゃならんけど
226:132人目の素数さん
10/05/05 22:29:26
>>224
>>90
227:132人目の素数さん
10/05/05 22:32:26
>>225
限られた回答スペースの中で証明?お前頭悪いだろ
228:132人目の素数さん
10/05/05 22:33:54
2行で書けるじゃん
229:132人目の素数さん
10/05/05 22:37:52
てか90証明になってないだろ
どっかでうろ覚えした証明の途中だけ書いたんじゃないの
230:132人目の素数さん
10/05/05 22:43:02
>>229
任意の実数tについて0≦Σ[k=1→n](a_{k}t+b_{k})^2=(∑(a_k)^2)t^2+2∑(a_k)(b_k)t+∑(b_k)^2
よって判別式/4= (∑(a_k)(b_k))^2-(∑(a_k)^2)(∑(b_k)^2)≦0
231:132人目の素数さん
10/05/05 22:46:52
>>230
その証明をしってるからこその229だったんだけどね
232:132人目の素数さん
10/05/05 22:49:02
だったら>>225さんのでいいじゃん。
233:132人目の素数さん
10/05/05 22:53:55
>>232
ベクトルでは3つまでしかできないっていったら90って言われたから、90じゃ証明になってないっていっただけで
俺も証明できるなら225でいいと思ってるよ
234:132人目の素数さん
10/05/05 22:59:34
>>90を書いた人は、このスレッドでは、細かいことを省いて考えを示唆すれば十分と思ったんだろ。
見りゃ分るとおり一度見れば誰でも再現できる証明だし。
235:225
10/05/05 23:38:26
>>227
「限られたスペースを費やすなどデメリットを受け入れても…」なんて
当たり前すぎて省略してるだけだ
やれやれ
236:132人目の素数さん
10/05/05 23:53:50
>>221
ありがとうございます。じゃあ『そこで、2↑OA=↑OC,3↑OB=↑ODとおくと~=↑OP=↑OD+α/2↑DC(0≦α/2≦1)であるから』の部分はなくても最初の一行+CDの説明だけでも減点はないということですね?
237:132人目の素数さん
10/05/06 04:29:44
選挙で議席分配に用いられる「ドント方式」が大政党に有利なことを高校レベルの数式で証明したいのですが、教えていただけませんか?
238:178
10/05/06 08:00:12
問題文を間違えていました、すいません。
しかしまだ一部分かりません。自分が最初から未だに分からない点は、
URLリンク(koideai.com)問題
URLリンク(koideai.com)解答
URLリンク(koideai.com)解答
↓に続きます
239:178
10/05/06 08:00:57
↑の続きです
ようは、AP+PQを最も小さくするaを求めるのなら、
なら、まず(2)ならば、
まず、最小にするPは、Q'(√2/4,3/4)として、
AQ'とy=xの交点となる点で、
最小にするaは、Q'からx軸に降ろした垂線になると思うのですが…
↓図のような感じです。
URLリンク(koideai.com)
なぜt=a/3という中途半端な点で最小になるのでしょう…?
Qを変数で置いて計算したら確かにそうなりますが…
240:132人目の素数さん
10/05/06 08:10:51
原点以外を中心とする円の方程式は習うのに、一般の二字曲線になると原点中心(?)の場合しか習わないのはなぜですか?
うまい具合にごまかされているのですか?
241:132人目の素数さん
10/05/06 08:12:35
でも、平行移動は習うよね
242:132人目の素数さん
10/05/06 08:12:41
すでに画像が流れている件について
243:132人目の素数さん
10/05/06 12:21:50
>>239
問題をしっかり理解しよう。Aは自由に動くのではなく定点。
仮にAがQ'からx軸に降ろした垂線、つまりa=√2/4だとするとr(Q)はQ(3/4,√2/4)で最小にならない
r(Q)がQ(3/4,√2/4)で最小になったすると、もともとAはどこにあったの?って問題
244:132人目の素数さん
10/05/06 12:43:36
>>239
図形で解くならQ'からx軸に降ろした垂線ではなく、対称図形のQ'における法線とx軸の交点がAだね
245:132人目の素数さん
10/05/06 15:43:04
>>240
1桁同士の九九の表は習うのに、2桁の九九の表を習わないのは何故ですか?
うまい具合にごまかされているのですか?
でも、掛け算の筆算は習うよね
246:132人目の素数さん
10/05/06 16:23:39
>>245
どういうこと?
247:132人目の素数さん
10/05/06 16:30:56
>>245
2の段から9の段を覚える労力と、2の段から99の段を覚える労力を比較してみ?
150倍くらい違うぞ。
248:132人目の素数さん
10/05/06 16:50:32
120倍でした
249:132人目の素数さん
10/05/06 16:59:34
とりあえず
2の段から9の段までの答えは全部あわせて122個の数字で構成されている
同じく2の段から99の段までは35140個
35140÷122≒288
250:132人目の素数さん
10/05/06 17:02:55
>>247
労力が問題なら、1桁同士であっても九九覚えなきゃいいということになる。
1桁同士の九九を覚えることは、覚えない場合と比べたら、
150倍どころでなく無限大の労力が必要だよ。。
251:132人目の素数さん
10/05/06 17:03:10
情報量でこれだけ差があると指導要領に含めるのは無理だな。
252:132人目の素数さん
10/05/06 18:40:18
それを覚えることで短縮できる時間と
覚えるために費やされる時間の割合が重要なんだろうけど、
文部科学省はこういうのを計算で出すのかな?
253:132人目の素数さん
10/05/06 18:46:56
>>252
2桁の九九は分析するまでもなくかなりの子が到達できないだろ。
計算とかいう以前だ。
254:132人目の素数さん
10/05/06 18:56:35
99の表で教室の壁が埋まるがな
255:132人目の素数さん
10/05/06 19:29:14
>>253
それを言うなら、1桁の九九も不要だろ。
覚えない国の方が遥かに多い。
256:132人目の素数さん
10/05/06 19:45:01
2進数だと頻繁に使う3の扱いがきついので
6進数あたりがいいと思うが
人類というのは標準的な指の数に囚われて…
257:132人目の素数さん
10/05/06 20:08:53
数字が10個あるので、10進数でちょうどいい
258:132人目の素数さん
10/05/06 20:12:37
>>257 それはひょっとしてギャグで言ってるのか・・・
259:256
10/05/06 20:14:47
>>257
不覚にも笑っちまった、ちくしょう…
260:132人目の素数さん
10/05/06 20:14:53
大問で
(1) 等式 hogehoge を示せ。
(2) (1)の等式を利用して hugahuga を計算せよ。
みたいになっている時、
(1)の証明をやらずに(2)においてhogehogeが既知のものとして計算を行った場合、
(2)の分の点数は貰えるのでしょうか?
261:132人目の素数さん
10/05/06 20:57:14
>>256
イギリスは12進数が好きなので、九九も12の段まで暗誦するそうだな。
262:132人目の素数さん
10/05/06 21:11:34
ところで、10×10は九九のうちに含まれるかについて
263:132人目の素数さん
10/05/06 21:15:46
>>260
それは数学の質問ではないので、受験板でどうぞ
264:132人目の素数さん
10/05/06 21:19:49
>>262
「九九」の由来は?
265:132人目の素数さん
10/05/06 21:21:43
実数の構成を公理的にするんじゃなくて、自然数から定義して整数、有理数、実数と構成する方法を教えてください。
266:132人目の素数さん
10/05/06 21:37:12
>>265
wikipediaの実数は読んでみた?
267:132人目の素数さん
10/05/06 21:50:53
>>264
「いろは」とか最初の文字から取る事が多いけど、
これについては9×9=81→1×1=1の順番で見たので九九になった。
とりあえず2桁×2桁は九九に入るかという事には関係ない
268:数学好きの一般人
10/05/06 21:53:16
インドの小学生は20の段までやるらしいぞ。
>>260 俺はそれで理〇大落ちた
269:132人目の素数さん
10/05/06 21:54:06
「青い鳥」とでも呼べばいいような
270:132人目の素数さん
10/05/06 22:01:37
>>268
> 俺はそれで理〇大落ちた
心の底からどうでもいい
271:132人目の素数さん
10/05/06 22:04:19
>>270
なら黙ってろよ
272:132人目の素数さん
10/05/06 22:14:10
ツンデレってことだろ、言わせんな恥ずかしい
273:132人目の素数さん
10/05/06 22:18:56
>>260
それは(1)⇒(2)を示しただけである。
274:132人目の素数さん
10/05/06 22:23:31
リーマン予想を仮定した定理…
275:132人目の素数さん
10/05/06 22:43:12
リーマン予想を証明したら何か変わるの?
別に必要なら証明なしに仮定してよくね?
276:132人目の素数さん
10/05/06 23:05:30
yomiuri online より
首相「公約でない」に「また余計なことを…」
一方で、沖縄側の「期待値」を高めたあげく、土壇場で発言を翻したことで沖縄側の強い不信を招き、
長期にわたる交渉でまとまった現行計画実現の可能性も難しくしたことへの反省の言葉はなかった。
読売の記者って、期待値の意味をしらないんでしょうか。
277:132人目の素数さん
10/05/06 23:08:55
期待をでいいね
278:132人目の素数さん
10/05/06 23:10:26
期待度でいいのでは?
279:132人目の素数さん
10/05/06 23:27:30
Arctanのテーラー展開はどのように求めるのでしょうか?
280:132人目の素数さん
10/05/07 02:59:54
演算はどのように構成されるのですか?
281:132人目の素数さん
10/05/07 07:11:00
グアムでいいじゃん、もともと米軍はノドンの射程から撤退してきてるのに。
282:132人目の素数さん
10/05/07 14:18:54
読売ワロチwww
期待感でいいだろうな
283:132人目の素数さん
10/05/07 20:42:40
高校の範囲の定理や公式で、証明を知っておいても意味がないものって
存在するのでしょうか
284:132人目の素数さん
10/05/07 20:45:38
意味がないかどうかは人それぞれだが…
なににとって意味がないかを言ってくれ
285:132人目の素数さん
10/05/07 21:25:30
x^2+(1-2k)x+k^2-2k=0の解をα,βとすると
α<0,β>1であるようなkの範囲を求める
問題なんですが、お願いします
何年か前の関大の問題なんですが・・・・・・
286:132人目の素数さん
10/05/07 21:27:43
>>285 まずはグラフ書け。
287:132人目の素数さん
10/05/07 21:30:05
>>285
グラフを思い浮かべてみ。
y=x^2+(1-2k)x+k^2-2k のグラフ(放物線)とx軸が、
x<0 と x>1 のところで1つずつ交わるようになってればいいわけ。
それには、この放物線が、x=0の所でもx=1の所でもx軸より下にあればいい。
288:132人目の素数さん
10/05/07 21:35:33
>>285
グラフの書き方だが、y=x^2+(1-2k)x+k^2-2kを y=(x-s)^2+tの形に変形する。
289:132人目の素数さん
10/05/07 21:37:26
おまえら簡単な問題だと、水を得た魚のようだな(笑)
290:132人目の素数さん
10/05/07 21:39:18
ああ おまえには無理だからな
291:132人目の素数さん
10/05/07 21:50:33
(x-a)(x-b)=x^2-(a+b)x+ab=x^2+(1-2k)x+k^2-2k=0
a<0,b>1
0+b>a+b=2k-1>1+a
b+1>2k>2+a
.5b+.5>=1>k>1>1+.5a
ab=k^2-2k<0
k(k-2)<0
k<2
292:132人目の素数さん
10/05/07 23:30:43
関数f(x)=2x^2+(5-a)x+8(0≦x≦5)の最小値mが、
ア m<f(0)
イ m<f(5)
ウ m<0
という3つの条件を満たすとき、定数aのとりうる値の範囲を求めよ。
自分で解くと3<a<5、5<a<13となったんですが、多分違う気がします。
よろしくお願いします。
293:132人目の素数さん
10/05/08 00:07:17
大学生1年ですが、高校の極限の範囲の問題なので質問させて頂きます。
n!^(1/n^2) (n→∞)
よろしくお願いします
294:132人目の素数さん
10/05/08 00:13:03
>>293
logとればいいんじゃね?
295:132人目の素数さん
10/05/08 00:15:13
>>294
logは試したのですが、それでもうまくいかなくて・・・
296:132人目の素数さん
10/05/08 00:18:46
>>293
どうしてテンプレやそのリンク先の表記に従って書けない?
細かい決まりごとを守れん人間は数学に向かんよ。
297:132人目の素数さん
10/05/08 00:56:36
sinxの微分で、和積の公式をどう使えばいいのか分かりません
どなたか導出の過程を教えてください…
298:132人目の素数さん
10/05/08 01:01:25
>>297
まず高校レベルでの微分の定義から書いてみるべし
すべてはそこから
299:297
10/05/08 01:10:55
定義書いたらひらめいたんでどなたか添削お願いします
f(x)=sin(x)とすると
定義より
f`(x)=lim[h→0]{f(x+h)-f(x)}/h
f`(x)=lim[h→0]{sin(x+h)-sin(x)}/h …①
ここで加法定理より
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
辺々を引くと
sin(α+β)-sin(α+β)=2cosαsinβ
α+β=x+h
α-β=x とすると
辺々足して
2α=2x+h …②
α=(2x+h)/2
辺々を引いて
2β=h
β=h …③
②、③を①に代入すると
f`(x)=lim[h→0]{cos{(2x+h)/2}sin(h/2)}/h
f`(x)=lim[h→0]{2cos{(2x+h)/2}sin(h/2)}/(h/2)}(1/2)
f`(x)=cosx
300:132人目の素数さん
10/05/08 01:38:13
>>293
log{n!^(1/n^2)}={Σ[1,n]logk}/(n^2)
y=logx は上に凸で面積比較から
∫[1,n]logxdx≦Σ[1,n]logk≦∫[1,n+1]logxdx
よって
(nlogn - n)/(n^2)≦{Σ[1,n]logk}/(n^2)≦{(n+1)log(n+1) - n}/(n^2)
挟みうちより
{Σ[1,n]logk}/(n^2)→0
したがって
log{n!^(1/n^2)}→0
∴n!^(1/n^2)→1
301:132人目の素数さん
10/05/08 01:43:45
1≦(n!)^(1/n^2)≦(n^n)^(1/n^2)=n^(1/n)で十分じゃね
302:132人目の素数さん
10/05/08 01:49:01
それ下を1で押さえるのは1に収束するのを知ってないと無理だし、どうやって1以上って示すの
303:132人目の素数さん
10/05/08 01:53:32
前半はともかく後半本気で言ってんの?
304:132人目の素数さん
10/05/08 01:53:55
寝ぼけてるな
1以上は普通にできるな
305:132人目の素数さん
10/05/08 02:13:24
>>296
おまえはもう答えなくていい
306:132人目の素数さん
10/05/08 06:59:53
>>305
おまえは数学に向かん、出入り禁止
307:132人目の素数さん
10/05/08 07:17:41
上のn^(1/n)を見て思ったんですが、x/e^x→0 (x→∞)って高校数学では、どうやって示すですか?
自分が高校生の時は、e^x>1+x+x^2/2とかみたいな、テイラー展開を使わないという高校数学の立場からするとかなり作為的なことをやってた気がしますがなんかもっとスマートな示し方でもあるんでしょうか。
308:132人目の素数さん
10/05/08 07:26:03
>>307 死ね
309:132人目の素数さん
10/05/08 07:29:48
>>299
f(x)=sin(x)とすると
定義より
f'(x)=lim[h→0]{f(x+h)-f(x)}/h
f'(x)=lim[h→0]{sin(x+h)-sin(x)}/h …(1)
ここで加法定理より
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
辺々を引くと
sin(α+β)-sin(α+β)=2cosαsinβ
α+β=x+h
α-β=x とすると
辺々足して
2α=2x+h …(2)
α=(2x+h)/2
辺々を引いて
2β=h
β=h …(3) (←間違い)
(2)、(3)を(1)に代入すると
f'(x)=lim[h→0]{cos{(2x+h)/2}sin(h/2)}/h (←間違い)
f'(x)=lim[h→0]{2cos{(2x+h)/2}sin(h/2)}/(h/2)}(1/2)
f'(x)=cosx
310:132人目の素数さん
10/05/08 09:15:04
>>305
きもっ
311:132人目の素数さん
10/05/08 09:46:44
方程式を解く問題で、
dy/dx=y^2-y
で、まず左辺を約分して、y/x=y^2-y
両辺にxをかけて、y=xy^2-xy
つまり、y=y(xy-x)
両辺をyでわって、xy-x=1
つまり、(y-1)x=1
両辺をy-1でわって、x=1/(y-1)
としたのですが、答えがy=0とy=1/(1-Ae^x)という答えがありました
これはどうやって出すんですか?
312:132人目の素数さん
10/05/08 09:50:24
答えが間違ってるんじゃね?
313:132人目の素数さん
10/05/08 11:11:41
>>311
スレ違い
314: ◆27Tn7FHaVY
10/05/08 11:51:57
>>307
e^x = {e^(x/2)}{e^(x/2)} > (x/2)(x/2)
onajika
315:132人目の素数さん
10/05/08 14:27:46
URLリンク(livedoor.blogimg.jp)
お願いします。
ちなみにこの画像はk→∞となってますがn→∞のようです。(画像は貰い物)
区分求積法かな、とは思ったのですが私の力では無理でした・・・
316:132人目の素数さん
10/05/08 14:37:42
えーとなんだ?
Σ[n=1,∞][ (-1/n) {1-(1/n)}^k ]を求めよ
ただし自然対数の底eについて
e = lim[n→∞]{ 1 + (1/n) }^nであることを
用いてもよい
か?首が痛い
317:132人目の素数さん
10/05/08 14:51:06
はいそうです
318:132人目の素数さん
10/05/08 14:52:37
___
/ || ̄ ̄|| ∧∧
| ||__|| ( )
| ̄ ̄\三⊂/ ̄ ̄ ̄/
| | ( ./ /
___ ゴキッ
/ || ̄ ̄|| <⌒ヽ ))
| ||__|| < 丿
| ̄ ̄\三⊂/ ̄ ̄ ̄/
| | ( ./ /
___
/ || ̄ ̄||
| ||__|| ミ ゴトッ
| ̄ ̄\三⊂/ ̄ ̄ ̄/ミ ,'⌒>
| | ( ./ / l、_>
319:132人目の素数さん
10/05/08 14:57:38
なんだ
lim[n→∞]Σ[k=1,n][ (-1/n) {1-(1/n)}^k ]
じゃないんかい
320:132人目の素数さん
10/05/08 15:22:21
あー確かに
>>315はkの存在が意味不明ですね
多分画像を送ってきた人の表記ミスだと思います
>>319が合ってるんじゃないかな・・・
321:132人目の素数さん
10/05/08 15:36:39
319があってるなら
Σ[k=1,n][(-1/n) {1-(1/n)}^k]
=-1/n * [{(1-(1/n)}-{1-(1/n)}^(n+1)]/{1-(1/n)}
=-{1-(1/n)}{1-{1-(1/n)}^n}→1/e - 1
322:132人目の素数さん
10/05/08 15:50:16
ありがとうございます
難しく考えすぎましたが、部分和を求めれば良かったんですね
偉そうに区分求積とか言うもんじゃないですね、恥ずかしい・・・
323:132人目の素数さん
10/05/08 16:51:24
>>312
ありがとうございました。
324:132人目の素数さん
10/05/08 17:20:37
a^2-9ab^2+a^2c-9b^2cを因数分解せよ。
友人から質問を受けたのですが…写し間違いでしょうか?
325:132人目の素数さん
10/05/08 17:22:35
はい
326:132人目の素数さん
10/05/08 17:38:32
いや、俺は写し間違いなんかじゃないと思うな
もっと深い意味があるのかもしれん
327:132人目の素数さん
10/05/08 17:48:08
ミスリードを狙った問題だわ
俺は作問者の性格を疑うね
328:132人目の素数さん
10/05/08 20:07:17
lim(n→∞)のとき An→αになるならば
lim(n→∞)(A1+A2+A3+A4+・・・・・・・・An)/nはいくらになるか。
難問です。どうやったらいいのですか?
329:132人目の素数さん
10/05/08 20:09:13
>>328
どうしてテンプレの表記で書けないのか不思議で仕方ないわ
330:132人目の素数さん
10/05/08 20:16:14
問題の解法についての質問ではないのですがお願いします
現在高2でまだ微積も定義ぐらいしか知らないひよっこなのですが、
数学の美しさみたいなものに非常に惹かれます
受験のための数学はコツコツ勉強していくつもりなので、
大学で研究したら分かるであろう、本格的な数学の楽しさみたいなもの、
そういうのを垣間見ることのできる簡単な数学書があったら、どうか教えてください><
331:132人目の素数さん
10/05/08 20:22:56
数学ガールあたりでいいんじゃね
332:132人目の素数さん
10/05/08 20:25:39
>>328
答えはαだけど、高校の範囲では示せないと思う。
333:132人目の素数さん
10/05/08 20:34:25
>>330 黒大数 もうやってるかもしれないけど。
あれが教科書だったらどんなに良かったろう。
334:132人目の素数さん
10/05/08 20:41:17
>>328
nが限り無く大きくなるときA_nは限り無くαに近づく、という高校流の極限定義では証明できない。
"気分的"には、A_nが限り無くαに近づいていくなら、殆どのnについてA_nがαに近いので
それらの和は殆どnαに近い。だからそれをnで割ったものも、殆どαにに近い、ということなのだが、わからんだろうな。
335:132人目の素数さん
10/05/08 20:43:31
>>333
それが教科書だったら訳わからなくなるよ。
教科書ていどをやってること前提だから。
336:132人目の素数さん
10/05/08 20:46:34
>>334
自作の問題だったんだがここまで難しいとは・・・・
こんな問題創れた自分に恥じないよう東大目指します^-^
337:132人目の素数さん
10/05/08 20:46:46
ab+ac+ad+bc+bd+cdを綺麗な順番に並べるとしたらどうなりますか?
ab+bc+caみたいにしようと思っても上手く行かなかったのですが……
338:132人目の素数さん
10/05/08 20:56:54
君がきれいだと思えばそれが答えだ
339:132人目の素数さん
10/05/08 21:00:59
>>337
おいらは(ab+bc+cd+da)+(ac+bd)かな☆
340:132人目の素数さん
10/05/08 21:05:13
>>337
形にこだわるなら
s=a+b+c+dとおくとき
a(s-a)+b(s-b)+c(s-c)+d(s-d)=s^2-(a^2+b^2+c^2+d^2)=2(君の式) が成り立つ。
もっとも、 a+b+c+d が綺麗な式と君が思うかどうか、おれは知らない。
341:132人目の素数さん
10/05/08 21:10:51
>>336
証明自体は簡単だよ
ただ高校の範囲では極限の定義が曖昧だからきっちり証明できないだけ
342:330
10/05/08 21:11:00
すばやいレス感謝です
>>331
数学ガールですか!書店で平積みにされてるの見ました
ぐぐったら、数学はどうやって考えるのか丁寧に書いてあるみたいですね
明日紀伊国屋書店行って買ってきます!ありがとうございました
343:せいいち
10/05/08 21:14:24
お米食べろ
344:330
10/05/08 21:16:16
>>333
大学への数学(研文書院)っすね。初耳でした・・・
厳密な定義がなされているってのは興味わきました。
どうも教科書は曖昧な部分が多い気がしていたので・・・。
でも難しそうですね>< 問題解くのは後として、習った範囲の説明を読むだけでも楽しいでしょうか
ありがとうございました
345:132人目の素数さん
10/05/08 21:37:39
>>337
(a+b)c+(b+c)d+(c+d)aとか
なんとなく(d+a)bが欲しくなるが
346:132人目の素数さん
10/05/08 21:43:48
>>345
340があるじゃん
347:132人目の素数さん
10/05/08 22:05:38
2つのベクトルの距離を内積、和、差だけを使って求めることは出来ますか?√も使えます。
348:132人目の素数さん
10/05/08 22:07:04
>>347
> 2つのベクトルの距離
の定義は?
349:132人目の素数さん
10/05/08 22:16:30
>>348
すいません。距離というか長さです。
350:132人目の素数さん
10/05/08 22:22:10
わかってねえ
351:132人目の素数さん
10/05/08 22:23:26
だから、2つのベクトルの「距離というか長さ」の定義は何だ?って聞いてるんだ
352:132人目の素数さん
10/05/08 22:24:41
わかりにくくてすいません
ベクトルa=[x,y] ベクトルb=[p,q]
みたいなときにこれらの内積、差、和のどれでも何回でも使ってab間の長さを求めることは出来ますか?
353:132人目の素数さん
10/05/08 22:27:25
頭痛がしてきた
354:330
10/05/08 22:27:57
ベクトルって距離は定義されてるのか?
355:132人目の素数さん
10/05/08 22:28:39
だから距離というのは何を意味しているのかを定義しろと…
356:132人目の素数さん
10/05/08 22:28:44
>>352
ab間の長さって何のことよ。
357:132人目の素数さん
10/05/08 22:28:54
二点A,、B間の距離を求めよって話ならよく聞くけどなあ?
358:132人目の素数さん
10/05/08 22:29:36
いつまで教えずにいられるかのゲームですね、わかります
359:132人目の素数さん
10/05/08 22:33:29
>>328
n>Nに関して、|A[n] - α|<ε
Max{A[1],A[2],…,A[N]}=Mとおく
|{(A[1]+A[2]+…+A[n])/n} - α|
≦(|A[1] - α|+|A[2] - α|+…+|A[N] - α|+|A[N+1] - α|+…+|A[n] - α|)/n
≦N(M-α)/n + (n-N)ε/n
<N(M-α)/n + ε
nを十分大きくって、N(M-α)/nをεより小ならしめば
|{(A[1]+A[2]+…+A[n])/n} - α|<2ε
εは任意だから、(A[1]+A[2]+…+A[n])/nはαに収束する。
360:132人目の素数さん
10/05/08 22:36:28
sqrtを使っていいなら難しくもない
というか高校範囲なら自明ともいう
361:132人目の素数さん
10/05/08 22:36:31
目立ちたがりやなのかバカなのか
362:132人目の素数さん
10/05/08 22:38:12
位置情報を捨象してるんだから、通常の意味での距離は定義できないんじゃないかな?
363:132人目の素数さん
10/05/08 22:40:39
>>362
sqrt使っていいなら公理も自明ともいえる
364:132人目の素数さん
10/05/08 23:59:29
>>359
そんな欠陥論法をよくもまあ恥ずかしげもなく見せびらかせるな
365: ◆27Tn7FHaVY
10/05/09 00:01:07
落ち着け
366:132人目の素数さん
10/05/09 00:10:51
>>364
修正してください お願いします
367:132人目の素数さん
10/05/09 00:12:40
x^2+y^2=4^2
と
x=2 で囲まれた月みたいな形の面積ってどうだすんだ・・
スレチだったらすいません
368:132人目の素数さん
10/05/09 00:14:29
普通に積分すればいいじゃない
369:132人目の素数さん
10/05/09 00:16:26
>>367
ちゃんと図を描いて交点を出せば、
扇形の中心角は求められるし、引くべき三角形の面積も出せる。
370:132人目の素数さん
10/05/09 00:33:31
理論ばかりに目がいって、現実を見ないと、>>367のようになる。ようするに、応用力がなくなる。
371:132人目の素数さん
10/05/09 00:46:41
脊髄反射のように積分とか言っちゃう奴はバカだね
数学に向いてないよ
372:132人目の素数さん
10/05/09 01:15:07
♪ル~と2プラス1 分の チャチャ 2プラスル~トの2 チャチャチャ♪
(2+√2)/(√2+1)
算数チャチャチャで解きましょう それほーらもうできた
分子を√2でくくり √2(√2+1) その(√2+1)で分母子を約せば~♪
こたえは簡単 たーったわずかの√2となるね チャチャチャ♪
373:132人目の素数さん
10/05/09 01:30:06
普通はsqrt[2]-1を使って自動的に有理化する
374:132人目の素数さん
10/05/09 01:39:37
必要ないとこを全角で書く奴って無粋だよね。特に数字。
375:132人目の素数さん
10/05/09 01:45:20
√2の近似値を微分で求めるにはどうしたらいい?
376:132人目の素数さん
10/05/09 01:48:21
log2の値がわかれば
377:132人目の素数さん
10/05/09 02:00:37
√2は許せるが√2は許せん
378:132人目の素数さん
10/05/09 02:21:22
√(1+x)=1+(1/2)x-(1/8)x^2+…
379:132人目の素数さん
10/05/09 02:47:29
>>378
アホかお前
380:132人目の素数さん
10/05/09 02:52:22
>>379
テーラー展開って知らない?
381:132人目の素数さん
10/05/09 05:22:57
一桁の整数という場合
-9~+9までの19個と捉えて良いですか
382:132人目の素数さん
10/05/09 07:17:31
好きにしろ
383:132人目の素数さん
10/05/09 07:19:31
ただの式変形だと思うのですが、
{e^(-3xlog2)}*(-3log2)
=(-3log2)2^(-3x)
という変形が何をしているのかさっぱりわかりません
どなたか教えてください
384:132人目の素数さん
10/05/09 07:33:30
e^(logx) = x (定義より)
e^(alogx) = e^(log(x^a)) = x^a
e^(-3xlog2) = e^(log(2^(-3x))) = 2^(-3x)
385:132人目の素数さん
10/05/09 07:53:25
△OABにおいて、OA↑=a↑、OB↑=b↑の時、△OABの面積Sをa↑、b↑で表せ
と言う問題で、
1/2√( |a↑|^2 * |b↑|^2 - (a↑*b↑)^2 )
上の式が解なのですが
a↑*a↑= |a↑|^2 なのでこのままだとルートの中がゼロになってしまうように思うのですが
どうしてなのでしょうか
386:132人目の素数さん
10/05/09 08:15:35
>>385
内積を理解していないようだ。
387:132人目の素数さん
10/05/09 08:18:45
>>381
整数の桁の定義を確認すれば、聞くまでもないこと。
更に、実は質問自体に不備があることにも気付くだろう。
388:132人目の素数さん
10/05/09 08:22:47
>>381
普通先頭の 0は桁数にカウントしないだろ
389:132人目の素数さん
10/05/09 08:38:48
>>386
すみません、どう理解してないのか教えていただけませんか
(a↑*b↑)^2は
a↑^2 * b↑^2にしてはいけず、|a↑|^2 * |b↑|^2 cos^2θ
にしなければいけないということですか?
内積の累乗の場合は括弧の中から計算しないといけないのでしょうか
390:132人目の素数さん
10/05/09 08:43:09
>>389
>>385に掲げてある式の中に使われている 3個の * についてそれぞれの意味を説明してくれ。
391:132人目の素数さん
10/05/09 08:44:15
自己解決しました、内積とかけ算を混同していたようです
392:132人目の素数さん
10/05/09 08:44:50
内積の記号も知らないのかと
393:132人目の素数さん
10/05/09 08:50:10
>>391
誰も回答していないなら自己解決でもよいのだろうが
394:132人目の素数さん
10/05/09 09:21:12
>>384
理解できました
ありがとうございます
395:132人目の素数さん
10/05/09 11:49:38
1次変換の意味がよく分からなかったので調べてみたのですが
「座標(x,y)を行列[[a,b][c,d]]を用いて座標(x´,y´)に移動させる」という意味で合ってますか?
396:132人目の素数さん
10/05/09 12:00:41
>>395
あってるお
397:132人目の素数さん
10/05/09 12:01:08
>>395
何その顔文字
398:132人目の素数さん
10/05/09 12:04:34
300年くらい前に、既にオイラーが顔文字を開発していた、という伝説を思い出した
399:132人目の素数さん
10/05/09 12:05:22
(x´,y´)<ピャー
400:132人目の素数さん
10/05/09 12:09:15
n次正方行列が1次変換するのはわかるのじゃが、
1次変換するのは、n次正方行列に限るのかの?
401:132人目の素数さん
10/05/09 12:11:01
そんなわけない。
行列なんて人間が恣意的に作り出した表現手段の一つでしかない。
402:132人目の素数さん
10/05/09 12:14:32
限るわけないだろw
403:132人目の素数さん
10/05/09 12:36:29
1/dθ(2/(1+cos2θ))
これの計算はどうすればいいのでしょうか分母二乗分の分母を
微分したものをかけるだけじゃ駄目ですよね
404:132人目の素数さん
10/05/09 12:46:48
倍角の公式
405:132人目の素数さん
10/05/09 12:48:37
>>403
> 1/dθ(2/(1+cos2θ))
も
> 分母二乗分の分母を微分したものをかける
も
意味不明
406:132人目の素数さん
10/05/09 12:51:00
d/dθの間違いでない?
(cosθ)^2=(1+cos2θ)/2
407:132人目の素数さん
10/05/09 12:51:07
きっと(1/dθ)は微分を行った後逆数をとるという演算子なんだよ
408:132人目の素数さん
10/05/09 13:26:36
>>406
そうです><
409:132人目の素数さん
10/05/09 14:24:26
数列{a[n]}に対してb[n]=(a1+a2+…+a[n])/nとおくとき{a[n]}が等差数列ならば{b[n]}も等差数列であることを示せ。
この問題がわかりません。教えてください。
410:132人目の素数さん
10/05/09 14:34:59
等差数列の性質とは何か、どんな式で表されるか
411:132人目の素数さん
10/05/09 14:38:10
>>409
等差数列の最初のn項の和の公式を使って書き直したらb_[n]はどうなるかくらいのことはやれるだろ。
412:132人目の素数さん
10/05/09 14:38:25
ただの計算
a[n]=a+(n-1)d
b[n]=a+(n-1)d/2
413:132人目の素数さん
10/05/09 15:58:49
しかも、逆も成り立つ
414:132人目の素数さん
10/05/09 16:43:34
質問です
(1/2・sin2x)'=cos2xの途中式を教えてください
415:132人目の素数さん
10/05/09 16:45:58
(1/2)*2cos2x
416:132人目の素数さん
10/05/09 16:49:56
>>414 暗算でできよーもんと言っても仕方ないので
d/dx(1/2*sin(2x))=1/2*(d/dx(sin(2x)))=1/2*cos(2x)*(d/dx(2x))=cos(2x)*(d/dx(x))=cos(2x)
417:132人目の素数さん
10/05/09 17:15:53
Σ[n=1,∞](1/2^(n-1))sin(nπ/2)
がわからなくて困っています。
とりあえずsinのところが1,0,-1,0・・・と
繰り返されるのはわかったんですが、
どうすればいいかわからないので、
教えてください。
418:132人目の素数さん
10/05/09 17:17:59
0のところ飛ばせば等比数列
419:414
10/05/09 18:04:54
すいません質問を変更させていただきます
「∫xcos2xdxを求めよ」という問題で、
部分積分法を使う際に模範解答では
∫xcos2xdx=∫x(1/2・sin2x)'dx
となっているのですが、その途中式が分かりません
420:132人目の素数さん
10/05/09 18:07:11
x/2 sin 2xを微分してみれば良い
421:132人目の素数さん
10/05/09 18:10:26
>>419
途中式も何もない。
cos(2x)=(1/2・sin(2x))' だから、左辺の当該部分を右辺で置き換えただけ。
422:132人目の素数さん
10/05/09 20:23:48
pは素数とする
(p-2)!≡1 (mod p)
を示してください。
423:132人目の素数さん
10/05/09 20:37:42
>>422
面白い性質ですね
でもフェルマーの小定理の証明が出来なかった私には無理みたいです
424:132人目の素数さん
10/05/09 20:40:36
cos(ωxt)*cos(ωyt) ωx<<ωy
このフーリエ変換はどんな感じになるでしょうか?
425:132人目の素数さん
10/05/09 20:49:27
>>424
積和
426:132人目の素数さん
10/05/09 20:50:12
フェルマーの小定理
a^(p-1)≡1 (mod p) ―(1)
の証明なんて、普通の高校生には思いつかんよな・・・。
(1) ⇒ a^p≡a ―(2)
(2)をaに関する数学的帰納法で示して、aとpが互いに素だから、(2)⇒(1)って。巧妙すぎ。
427:132人目の素数さん
10/05/09 20:55:56
しかも、それを拡張したオイラーさんなんてマジで尊敬する。
428:132人目の素数さん
10/05/09 21:26:10
>>425
ありがとうございます
積和の公式のあとはどうやればいいのでしょうか?
よかったらお願いします。
429:132人目の素数さん
10/05/09 22:00:39
正方形と、それに内接する扇形で囲まれた部分の面積を求める問題なのですが、
私は以下の図のように積分を使う方法しか思いつかなかったのですが
もっと初等的な方法で求めるにはどうすればいいのでしょうか?
よろしくお願い致します。
URLリンク(u12.getuploader.com)
430:132人目の素数さん
10/05/09 22:05:51
>>429
正三角形を利用する。
431:132人目の素数さん
10/05/09 22:11:05
>>429
正方形から、一辺aの正三角形と、半径a頂角π/3の扇形を減じたものが
4つの斜線部のうちの一つ。
432:132人目の素数さん
10/05/09 22:22:54
あーなるほど
正方形が見えませんでした
URLリンク(u12.getuploader.com)
こういうことですね
簡潔ですね
433:132人目の素数さん
10/05/09 22:26:08
見えなかったのは正方形じゃなくて正三角形ですね
434:132人目の素数さん
10/05/09 22:27:38
1から5までの数字の書かれたカードが1枚ずつあり5人の人が好きなカードを取る
同じカードを選んだ人がいる場合はどちらか一方がもらう
組み合わせは何通りあるか
お願いします
435:132人目の素数さん
10/05/09 22:29:39
>>434
日本語で
問題文は正確に
436:132人目の素数さん
10/05/09 22:33:08
>>434
0通り
その問題だったら100%ありえる話じゃないからな
437:132人目の素数さん
10/05/09 22:35:40
口頭で問題を出されたのでうまく表現できていないようですすみません
1,2,3,4,5の書かれたカードがある
5人の生徒がそれぞれ好きなカード一枚を選ぶ
複数の生徒が同じ数字を選んだ場合、一人しかカードをもらうことができず
他の人はカードをもらえない
生徒がカードをもらう組み合わせは何通りか(カードを持っていない場合も含める)
どこか分からないところがあったら言ってください
438:132人目の素数さん
10/05/09 22:40:04
フィーリングカップル5:5か
439:132人目の素数さん
10/05/09 22:42:32
ちょっと違うな
440:132人目の素数さん
10/05/09 22:58:26
5!
441:132人目の素数さん
10/05/09 23:01:57
すいません。
よかったらcos(ωxt)*cos(ωyt) ωx<<ωy
の積和
1/2cos(ωx+ωy)+1/2cos(ωx-ωy)のフーリエ変換を教えていただけないですか?
442:437
10/05/09 23:02:13
>>440
それはカードをもらうことができない生徒がいる場合を除いたものではと思うのですが
443:132人目の素数さん
10/05/09 23:04:19
>>442
もう自分で考えるか先生にきけ
444:132人目の素数さん
10/05/09 23:04:54
大学or高専の宿題は自分でやれよ
445:132人目の素数さん
10/05/09 23:09:57
>>437
お前がどこが分らないのかが分らない
446:437
10/05/09 23:13:34
全員もらう場合=5!通り
一人だけもらう場合=5*5通り
他が分からないです
数えたらできそうな気もしますがちゃんとした式を考えないと実際に使えないので
447:132人目の素数さん
10/05/09 23:22:34
>>422
ウィルソンの定理より
(p-1)!≡-1 (mod p)
また
(p-1)!≡p-1 (mod p)
の両辺を p-1 で割って
(p-2)!≡1 (mod p)
448:132人目の素数さん
10/05/09 23:22:50
>>446
> 他が分からないです
なんで?
2人貰う場合、3人貰う場合、ってやっていきゃいいじゃん。
3人まで考えれば、n人貰う場合の一般式は予想つくだろ。
> 数えたらできそうな気もしますがちゃんとした式を考えないと実際に使えないので
なんの式?
やったらいいじゃん。
449:132人目の素数さん
10/05/09 23:23:02
>>446
2人がもらう場合は、もらう二人を選ぶ5c2通り、二人がどのカードをもらうかを選ぶ5p2通り
これをかければいいんじゃねーの?
450:437
10/05/09 23:36:56
アドバイス通りやってみました
2人の場合 カードの組み合わせ5p2、生徒の組み合わせ5p2、カードと生徒の組み合わせ2!
同様に3人 5p3,5p3,3!
4人 5p4,5p4,4!
25+200+600+600+120=1545通り であってるでしょうか?
451:132人目の素数さん
10/05/09 23:39:50
いいえケフィアです
452:132人目の素数さん
10/05/09 23:43:06
((1+a+b+c+d+e)^5)-1
453:132人目の素数さん
10/05/09 23:43:21
>>450
ok
454:132人目の素数さん
10/05/09 23:45:25
難しくない問題のはずなのですが自分には解けなかったので教えてください。
1から9までの数字が書かれた白いカードが一枚ずつ計9枚あり、1から3までの数字が書かれた赤いカードが3枚ずつ計9枚ある。これら18枚から何枚か取り出して横に並べる。
ただし、同じ数字の赤いカードは区別しない。
(1)2枚並べる並べ方
(2)赤白赤の順に3枚並べる並べ方
(3)3枚並べる並べ方
455:132人目の素数さん
10/05/09 23:47:07
↑大事な事を書き忘れてました
問題文の最後に追記です
このとき、次の並べ方はそれぞれ何とおりあるか。
456:132人目の素数さん
10/05/09 23:53:31
赤い玉1個、黄色い玉5個、青い玉7個から
11個選んで円形に並べるときの
並べ方は、何個あるか。
お願いします。
457:437
10/05/09 23:54:13
ありがとうございました
たぶん理解できたと思います
458:132人目の素数さん
10/05/10 00:27:16
sinx/x=1になる理由が知りたくて証明(解説)のHPをいろいろみてるんですが、どうして
(1/2)*1*sinx< 1*1*π*(x/2π)<(1/2)*1*tanx
の式からから
1>sinx/x>cosx
が出てくるのかが分かりません
省略されている式を教えてください
459:132人目の素数さん
10/05/10 00:30:44
sinx/x=1は成り立たないけど…
460:132人目の素数さん
10/05/10 00:30:44
三角形の面積
461:132人目の素数さん
10/05/10 00:30:50
sinxで割って逆数をとる
462:458
10/05/10 00:32:29
sinx/x=1 (x→0) です 間違ってました
463:132人目の素数さん
10/05/10 00:35:13
>>462
テンプレに沿った表記をなぜしない
464:132人目の素数さん
10/05/10 00:35:56
別にわかるからいいだろ
465:132人目の素数さん
10/05/10 00:38:27
(1/2)*1*sinx < 1*1*π*(x/2π) < (1/2)*1*tanx
2をかけて
sinx < x < tanx
sinxで割って
1 < x/sinx < 1/cosx
ここでx→0なのでx=0付近でcosx>0
よって逆数をとって
1 > sinx/x > cosx
466:132人目の素数さん
10/05/10 00:38:55
sin1ですね。
467:132人目の素数さん
10/05/10 00:40:14
なんだか名前を呼ばれた気がする
468:458
10/05/10 00:41:31
理解できました!
レスありがとうございます
逆数で不等号の向きが変わるのは知らなかったです;
符号変えるときだけだと思ってました
469:132人目の素数さん
10/05/10 00:43:16
適当な数でやってみればいい
2 < 5
1/2 > 1/5
470:132人目の素数さん
10/05/10 00:51:35
正三角形の一つの頂点をスタートとして任意の頂点を選びその中点に点を打つ。
点を打った地点から任意に頂点を選びその中点に点を打つ。
この操作を無限に繰り返したらどんな図形が描かれてその面積はどうなるのでしょうか。
また正n角形ではどうなりますか。
自分でふと思いついた問題なのですが、どう考えればいいのでしょうか?
471:132人目の素数さん
10/05/10 00:52:32
>>468
>>逆数で不等号の向きが変わる
0 < a < b < c のとき
1/c < 1/b < 1/a を示せ。
このような証明問題をやってみるといい。
472:458
10/05/10 01:01:57
>>469
考えてみるとそうですよね。でも言われないと気づかなかった;
>>471
分母が1になるように全部順番にかけていっていったらできました*^-^
473:132人目の素数さん
10/05/10 01:05:25
顔文字やめろむかつく
474:132人目の素数さん
10/05/10 01:05:47
>>473
おまえまだいたのか
475:132人目の素数さん
10/05/10 01:08:26
オマエモナ
476:132人目の素数さん
10/05/10 01:10:31
____
/ \ /\ キリッ
. / (ー) (ー)\
/ ⌒(__人__)⌒ \
| |r┬-| | 顔文字やめろむかつく
\ `ー'´ /
ノ \
/´ ヽ
| l \
ヽ -一''''''"~~``'ー--、 -一'''''''ー-、.
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒))
____
/_ノ ヽ、_\
ミ ミ ミ o゚((●)) ((●))゚o ミ ミ ミ
/⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\ /⌒)⌒)⌒)
| / / / |r┬-| | (⌒)/ / / // だっておwwwwwww
| :::::::::::(⌒) | | | / ゝ :::::::::::/
| ノ | | | \ / ) /
ヽ / `ー'´ ヽ / / バ
| | l||l 从人 l||l l||l 从人 l||l バ ン
ヽ -一''''''"~~``'ー--、 -一'''''''ー-、 ン
ヽ ____(⌒)(⌒)⌒) ) (⌒_(⌒)⌒)⌒))
477:132人目の素数さん
10/05/10 01:11:37
荒らすなカス
478:132人目の素数さん
10/05/10 01:13:58
ぷぷっ
479:132人目の素数さん
10/05/10 01:34:22
>>470
URLリンク(ja.wikipedia.org)シェルピンスキーのギャスケット
か?間違ってるかもしれんが
480:132人目の素数さん
10/05/10 01:38:47
>>473
p ( * ^ - ^ ) q
481:132人目の素数さん
10/05/10 01:44:08
o000O
(⌒⌒)
ヽ (
(_)
482: ◆27Tn7FHaVY
10/05/10 01:49:23
顔文字やめろむかつく
483:132人目の素数さん
10/05/10 01:50:55
オマエモナ
484:132人目の素数さん
10/05/10 01:58:05
(x´,y´)
485:132人目の素数さん
10/05/10 09:15:24
>>484
また出てきたwwww
これこのスレのマスコットにしようず
486:132人目の素数さん
10/05/10 09:20:44
こんなのもある
> >>821
> ω^3=1→ω^3-1=0→(ω-1)(ω^2+ω+1)=0→ω^2+ω+1=0(∵ω≠1)
> →ω^2=-ω-1
>
> 与式=2+ω-ω^2-2ω^3*ω=2+ω-(-ω-1)-2ω=3
> それと、どうでもいいけど、コレが ↑^^^^^^顔文字に見えて仕方ない
487:132人目の素数さん
10/05/10 12:24:41
この式を因数分解せよ。
ax二乗+(ab+1)x+b
です。
わかりやすく教えてくださると幸いです。
明日因数分解のテストがあるんです。知恵袋で質問しても分かりませんでした。
なので皆さんが頼りです。お願いします。
488:132人目の素数さん
10/05/10 12:50:05
テンプレ読んで数式を書き直して来なさい
489:132人目の素数さん
10/05/10 13:13:53
ax^2+(ab+1)x+b
テンプレ見てなおしました。
教えてください。お願いします。
490:132人目の素数さん
10/05/10 13:18:06
>>489 たすきがけで万全
491:132人目の素数さん
10/05/10 13:24:24
具体的に書くとこう
a 1 1
×
1 b ab
───
a b ab+1
よって、与式=(ax+1)(x+b)
492:132人目の素数さん
10/05/10 14:03:37
>>491
ん?
因数分解した後で、たすき掛けの形で書いてるだけじゃん
493:132人目の素数さん
10/05/10 14:04:47
>>492 馬鹿乙
494:132人目の素数さん
10/05/10 14:06:00
たすき掛けって検算しやすく書いてるだけだもんな
495:132人目の素数さん
10/05/10 14:06:16
>>492
たすきがけをいちから説明しないとダメか?
496:132人目の素数さん
10/05/10 14:09:09
たすきがけって理解できるまでは難しいよね
理解した後も組み合わせ考えるの面倒だよね
497:132人目の素数さん
10/05/10 14:09:49
たすきがけって高校生だっけか?
498:132人目の素数さん
10/05/10 14:09:59
高校生だよ
499:132人目の素数さん
10/05/10 14:10:21
「よって」ってのはおかしいな。
500:132人目の素数さん
10/05/10 14:11:14
>>498
10秒で返すとかwww
実況スレかよwww
501:132人目の素数さん
10/05/10 14:11:36
まぁ脳内で因数分解したあとで、たすき掛け書いてるのは明らかなわけで、
逆にそうでなかったら、相当アレだと思うけどな。
502:132人目の素数さん
10/05/10 14:12:59
>>495
少なくともお前には無理
503:132人目の素数さん
10/05/10 14:13:45
正解のたすき掛けが書ける時点で(ax+1)(x+b)も書けるんだからなあ。
なんのために書いてるのかわからん。
個人的には検算しやすい気もしない。
504:132人目の素数さん
10/05/10 14:16:27
>>503
おまえは書いてある通りが時系列と思い込んでる時点で負け犬
505:132人目の素数さん
10/05/10 14:17:01
>>500
たまたま更新したのと497が書き込んだのがかぶっただけだよw
これでも書き込もうか数秒悩んだから、本当にタイミングが一致したんだろうな
506:132人目の素数さん
10/05/10 14:21:03
学校行かなくていいんですか?
507:132人目の素数さん
10/05/10 14:23:02
>>506 Please write in Japanese.
508:132人目の素数さん
10/05/10 14:23:44
>>506
>>506
509:132人目の素数さん
10/05/10 14:24:32
>>504
意味が分からん。
それじゃあ、意味ないことをやっていると認めているようなもんじゃないのか?
510:132人目の素数さん
10/05/10 14:52:31
たすきがけと言いたいから、クロスさせるのか
クロスするから、たすきがけか
511:132人目の素数さん
10/05/10 14:54:28
>>509
ますますわからんな。
たすきがけのできる人間ならそんな疑問が出る訳ないんだが。
512:132人目の素数さん
10/05/10 15:13:20
皆さんの教えを受けて、理解することが出来ました。
本当にありがとうございます。
今日が学校が休みなのは、土曜にPTA参観授業があったからです。
513:132人目の素数さん
10/05/10 15:16:28
娘は昨日だったが、最近は土曜に授業参観やるとこもあるのか。
514:132人目の素数さん
10/05/10 15:23:50
たすき掛けっていっつも揉めるなw
たすき掛け派の根拠は見たことないけどw
515:132人目の素数さん
10/05/10 15:32:11
大きい整数の平方根の開き方を詳しく解説してるサイトを教えてください。
516:132人目の素数さん
10/05/10 15:51:37
>>515
開平法でググれば出てくるんでないか?
517:132人目の素数さん
10/05/10 16:32:08
ありがとうございました。
518:132人目の素数さん
10/05/10 17:48:05
>>513
平日に会社休んで行くのか、君のところはアレだな
519:132人目の素数さん
10/05/10 19:15:06
陰関数の微分法って関数のグラフ上の任意の点の接線の傾きを求めることと同じですか?
520:519
10/05/10 19:33:10
なんか違うか
微分法が関数のグラフ上の任意の点の接線の傾きを求めることで
陰関数の微分法は
y=f(x)に直しにくい関数f(x,y)を微分するテクニックみたいなもんですか?
521:132人目の素数さん
10/05/10 19:38:14
違う
522:132人目の素数さん
10/05/10 19:51:11
>>520
思い込みにも程がある
523:132人目の素数さん
10/05/10 20:44:39
パラメーター表示の微分って
524:132人目の素数さん
10/05/10 20:49:56
何が違うのか教えていただけると・・・
525:132人目の素数さん
10/05/10 20:58:03
df=fxdx+fydy
テンソルです
526:132人目の素数さん
10/05/10 21:18:38
直角をはさむ2辺の長さがa、bの直角三角形で内接円の半径をrとする。
(1)rをa、bで表せ。
(2)a、bを整数とし、r=5とする。このようなa、bの組をすべて求めよ。
(1)はr=ab/(a+b+√(a^2+b^2)) となりました。
(2)の解き方がわかりません。
どなたか教えてください。
527:132人目の素数さん
10/05/10 21:32:49
失礼します。
次の問題の解き方・答えをおしえてください
y=√{x/(x^2+1)}を微分せよ、です。
528:132人目の素数さん
10/05/10 21:39:11
お断りします
529:132人目の素数さん
10/05/10 21:42:07
分数の表記法が分からなくなりました
a+b+c
- ――
3
となっているときこれは
-a+b+cを3で割っているのか
-a-b-cを3で割っているのかどちらでしょうか
530:132人目の素数さん
10/05/10 21:42:51
>>527
この手の形の関数は対数をとって微分
531:132人目の素数さん
10/05/10 21:43:24
>>529
後者
532:132人目の素数さん
10/05/10 21:44:02
>>526
(1)はそれであってる。
(2)は、とりあえず(a+b-√(a^2+b^2) ≠ 0 を考慮しつつ)有理化してみると
5=ab/{a+b+√(a^2+b^2)} = {a+b-√(a^2+b^2)}/2 なので、
a+b-10 = √(a^2+b^2) となる。
両辺2乗して整理すると ab - 10(a+b) + 50 = 0 かつ a+b-10 ≧ 0
なので、(a-10)(b-10) = 50 = 2*5*5 かつ a+b ≧ 10
あとは総当たり。
533:132人目の素数さん
10/05/10 21:44:30
>>529
分子は -(a+b+c) の意味だから下のほう
534:132人目の素数さん
10/05/10 21:44:48
>>531
ありがとうございました
535:132人目の素数さん
10/05/10 22:03:38
>>532
回答ありがとうございました
536:132人目の素数さん
10/05/10 22:07:01
>>530
対数・・・ですか?
どうやるのでしょうか。。
自分なりに力技(?)でやってみたのを見てくださいませんでしょうか。
y=y=√{x/(x^2+1)}={x/(x^2+1)}^(1/2)
y'=(1/2)・{x/(x^2+1)}^(-1/2)・{(1)・(x^2+1) - (x)・(2x)} / {(x^2+1)^2}
y'=(-x^2-1) / 2・√{x/(x^2+1)}・(^2+1)
です。とても読みにくいですが、再度お願いしますm(-_-)m
537:132人目の素数さん
10/05/10 22:18:01
顔文字やめろむかつく
538:132人目の素数さん
10/05/10 22:18:47
>>536
y=√{x/(x^2+1)} の両辺の対数を取る。
log(y)=(1/2){log(x)-log(x^2+1)} を微分して
(1/y)y'=(1/2){(1/x)-2x/(x^2+1)}=(1/2)(1-x^2)/(x(1+x^2))
y'=(1/2)√{x/(x^2+1)}(1-x^2)/(x(1+x^2))
539:132人目の素数さん
10/05/10 22:19:23
>>537
おまえまだいたのか
540:132人目の素数さん
10/05/10 22:35:42
(x´,y´)
541:132人目の素数さん
10/05/10 22:37:03
>>538
なるほど~~~こういう解き方もあるんですね!
最後に一つだけ質問いいでしょうか。
3行目の左辺の (1/y)y'
これは、、、、どういうことなのでしょうか…?
合成関数と見たからなのでしょうか??
542:132人目の素数さん
10/05/10 22:40:59
>>541
log(f(x))を微分してみよ
543:132人目の素数さん
10/05/10 22:51:28
>>542
あ・・・!
理解しましたw
どうも付き合ってくださってありがとうございました。
544:132人目の素数さん
10/05/10 22:58:40
三角形ABCにおいて、∠Aの二等分線とこの三角形の外接円との交点でAと異なる点をDとする。
同様に∠B、∠Cの二等分線とこの外接円との交点をそれぞれE、Fとする。
このとき三直線AD、BE、CFは一点Hで交わり、この点Hは三角形DEFの垂心と一致することを証明せよ。
何から手をつけていいかわかりません。
どなたか教えてください。
545:132人目の素数さん
10/05/11 00:27:34
-(1-x)^2+p=1
というのが解けません
どうやるの?
546:132人目の素数さん
10/05/11 00:29:24
>>545
それで問題全部?
547:132人目の素数さん
10/05/11 00:33:56
順番にほぐしていけw
-(1-x)^2+p=1
(1-x)^2=?
x-1=?
x=?
548:132人目の素数さん
10/05/11 01:03:02
>>544
頻出問題だから、
多分「外接円との交点」とかでぐぐれば出てくるんじゃないか。
549:132人目の素数さん
10/05/11 02:01:59
>>548
ありがとう
550:132人目の素数さん
10/05/11 12:42:23
15^31は何桁の数か。また最高位の数字は何か。
ただし、log_{10}(2)=0.3010、log_{10}(3)=0.4771とする。
桁の方はlog_{10}(15^31)=36.4591で37桁とわかったのですが、
最高位の数字がわかりません。
教えてください。
551:132人目の素数さん
10/05/11 12:51:05
>>550
10^36、2*10^36、3*10^36……9*10^36、10^37
これらのどの間に入るかってのがわかればいいってことじゃないか?
552:132人目の素数さん
10/05/11 12:54:23
>>550 log_{10}(2) < 0.4591 < log_{10}(3)
553:132人目の素数さん
10/05/11 13:32:16
1対1の数学3のP14の
lim[x→∞]{√(2x^2-3x+4)-(ax+b)}=0となるように、定数a,bの値を求めよっていう問題です。
解答では、分子の有理化をして分母、分子をxで割り、x→∞のとき、分母→√(2)+aとなる。有理化した式が0に収束するためには、
2-a^2=0 ∴a=√2が必要で、このとき・・・と続きます。
そこでわからない点なんですが、分数式では分母→0のとき、分子→0が必要条件として使うことはわかります。、
しかし、この問題では2-a^2=0がなぜ必要条件になるのかがわかりません。
2-a^2=0は分子をxで割った時のxの一次式の係数が0になるようにしているだけで、
分子=0になるとは思えないんですが・・・
よろしくお願いします
554:132人目の素数さん
10/05/11 13:42:50
>>553
lim[x→∞]{√(2x^2-3x+4)-(ax+b)}=0 ならば
lim[x→∞]{√(2x^2-3x+4)-(ax+b)}/x=0。左辺を変形して
lim[x→∞]{√(2-3/x+4/x^2)-a+b/x}=√2-a=0。
555:132人目の素数さん
10/05/11 14:07:32
懐かしい。俺も受験生のとき>>553の問題わかんなかった
556:132人目の素数さん
10/05/11 14:35:09
>>553
分子にxの1次以上の項が残っていたら、分子は発散してしまう。
> 有理化した式が0に収束するためには、2-a^2=0 ∴a=√2が必要で、
これは正確には、
> 有理化した式が収束するためには、2-a^2=0 ∴a=√2が必要で、
と書くべきなのではないだろうか。
557:132人目の素数さん
10/05/11 15:13:03
>>551,552
それでどうやって求めるんでしょうか?
558:132人目の素数さん
10/05/11 15:20:26
>>557
> 10^36、2*10^36、3*10^36……9*10^36、10^37
全部(常用)対数取ってみて
559:132人目の素数さん
10/05/11 15:21:40
>>557
>>552見てわかんないと、かなり絶望的なんだけど。
560:132人目の素数さん
10/05/11 15:22:00
>>557
15^(31) = 10^(36.4591) = 10^(36) * 10^(0.4591)
561:132人目の素数さん
10/05/11 15:23:46
桁数のほうは出来るのに、>>551-552を見てわからんというのは不思議だな
562:132人目の素数さん
10/05/11 15:27:45
公式は覚えていても、どうして対数で桁数が分かるかは分かってないんじゃないか
563:148
10/05/11 15:29:04
>>165>>170-171
座標上で ( x , f(x) )になる全ての点を結んだのが関数 y = f(x)
同じように座標上で ( x , g(x) ) になる全ての点を結んだのが関数 y = g(x)
自分が質問した問題では y座標だけに関して平行移動しているので
y座標 f(x) から b だけ平行移動したものが y座標 g(x) になる
よって y座標 g(x) から平行移動した分の b だけ引けばもとの y座標になる
だから式にすれば
g(x) - b = f(x)・・・①
と表すことができる
自分は何故①の左辺が y-b にならないのかを聞きましたが
y-b で表すならばその y がすでに g(x) の意味を持っている
皆さんが教えてくれたことをもとに考えてみました
こういうことでいいのでしょうか?
いいのであればそう言っていただけたら助かります
564:132人目の素数さん
10/05/11 15:42:31
Y=g(X) とおく
条件より
Y=y+b X=x+a ⇔ y=Y-b x=X-a
y=f(x) に y=Y-b x=X-a を代入して
Y-b=f(X-a)
今は a=0
Y-b=f(X)
565:132人目の素数さん
10/05/11 15:49:41
0.4591 ??
566:132人目の素数さん
10/05/11 16:04:42
√7とか√5が無理数である事の証明法についてなんですけど、
(√7を無理数でないと仮定して1以外に公約数を持たないa、bで√7=a/bと仮定して
a^2=7b^2
(略)
7b^2=49c^2
で
a、bが7の公約数を持っちゃって、1以外に公約数を持たないことに矛盾している事を示すってやつ。)
これだと√4でも無理数って事になっちゃいません?
567:132人目の素数さん
10/05/11 16:12:40
>>566
この証明には7や5が自然数の2乗でないことを使っているんでは?
568:132人目の素数さん
10/05/11 16:14:32
>>558-562
桁数じゃなくて最高位の数字(その桁の係数)の計算のやり方を知りたいんですが…?
569:132人目の素数さん
10/05/11 16:16:25
>>568
>>551 >>552 >>560 を見て分からないのなら死んだほうがいいかも
570:132人目の素数さん
10/05/11 16:17:52
>>568
とにかく >>558 やってみろ
571:132人目の素数さん
10/05/11 16:19:05
>>567
もし√4は2で有理数という考えを抜きにして、
√4をa/bと仮定しちゃったらどうなるんですか?
572:132人目の素数さん
10/05/11 16:24:49
>>571
√4 = a/b とおく(a,bは互いに素)。
両辺平方して 4b^2 = a^2 。よってaは偶数。
a=2c とおくと b^2 = c^2 。これはb=c=1のときに成り立つので 何の矛盾も生じない。
573:132人目の素数さん
10/05/11 16:25:43
だって√7も√5もいまの数学では限界が見えていないだけで、もしかしたら有理数かもしれないじゃないですか。
いつか
223606797749978969・・・・・/100000000000000000・・・・・・
で表せるかもしれないし
証明になってなくありません?
574:132人目の素数さん
10/05/11 16:27:14
>>566
5や7が素数であることを利用している。それが大前提。
4は素数でなく2x2に分解できるから証明が成り立たなくなる。
本来は5や7が素数であり、4は素数でないことを証明する必要があるんだけど、それは既知ということ。
高校の数学なんて所詮まやかしにすぎない。
575:132人目の素数さん
10/05/11 16:27:50
それはひょっとしてギャグでいってるのか
つまんねえからやめろ荒らすな
576:132人目の素数さん
10/05/11 16:28:22
>>574
最後の一行は余計
577:132人目の素数さん
10/05/11 16:29:17
>>574
35は素数じゃないが同様に√35の無理数性を証明出来ないか?
578:132人目の素数さん
10/05/11 16:30:52
>>574
>本来は5や7が素数であり、4は素数でないことを証明する必要があるんだけど、それは既知ということ。
>高校の数学なんて所詮まやかしにすぎない。
5や7が素数で、4が素数でないことなど、既知もなにも明らかだろ。証明もすぐできるだろうが。
なにが「まやかし」か。まやかしなのはお前の脳ミソ。
579:132人目の素数さん
10/05/11 16:35:49
>>565
36
36.3010
36.4771
36.6020
36.6989
36.7781
36.8450
36.9030
36.9542
37
それでどうやって計算するんでしょうか?
580:132人目の素数さん
10/05/11 16:48:27
>>579
>>551
ところで、例えば 5*10^36 の最高位の数字は何か分かるのか?
581:132人目の素数さん
10/05/11 16:50:02
>>574
まやかしじゃなくて自明だから証明してないだけだろ
582:132人目の素数さん
10/05/11 16:54:29
>>572
>両辺平方して 4b^2 = a^2 。よってaは偶数。
>a=2c とおくと
結局それも、√4=2で有理数という前提があるからじゃないですか?
結局、√4=有理数とか、√5・√7=無理数
という先入観の下でも証明でしかないと思うんですけど。
例えば√11095561とかだったらどうしますか?
有理数か無理数かを証明しなくちゃいけないのに、その前提の下だったら証明になってないと思うんですが。
てかそれだったら、
2の平方だから有理数
これでいいんじゃないんですか?
583:132人目の素数さん
10/05/11 16:55:21
>>582
×先入観の下でも
○先入観の下での
584:132人目の素数さん
10/05/11 17:02:22
>>582
√4が有理数であることの証明は「2^2=4 だから√4=2で有理数」でいいよ。
585:132人目の素数さん
10/05/11 17:04:31
つまり、√4=2ってのはもう数学では常識ですよね?
もう誰しもわかりきった事ですよね?
だけどもし問題で
√11095561について出されたら、どうします?
11095561が何の平方かって一々調べます?
もしこれが証明になるんだったら、
√11095561=a/b
で証明できなくちゃいけないんじゃないんですか?
586:132人目の素数さん
10/05/11 17:09:06
そんなことはパソコン使って証明するんだよ
587:132人目の素数さん
10/05/11 17:10:05
>>580
それが分かったところで何か意味があるのか?
588:132人目の素数さん
10/05/11 17:14:51
>>585
だからそこは目をつぶれ、高校数学は所詮まやかし。
今必要なのはパータンで解いて点数稼ぐこと、そのための勉強でしょ。
その後もし数学の道に進むようなことがあれば、
きちんしとしたやり方が待ってから。
まぁこういうのは数学に限った話ではないけどな。
589:132人目の素数さん
10/05/11 17:17:03
まあ今回の問題は
√7は無理数である事を証明しろ
という、問題文からして無理数であることを断定したものですけど、
√7は有理数か無理数か
となる場合、これで証明になるのかなぁと思ったんで。
結局
√7は無理数である
っていう前提の下ですよね
はっきり言って何の意味もない証明だと思うんですけど
590:132人目の素数さん
10/05/11 17:17:47
>>585
> 11095561が何の平方かって一々調べます?
そう。まず平方数かどうかを確かめる。平方数でなかったらその平方根が無理数であることの証明にかかる。
591:132人目の素数さん
10/05/11 17:19:02
>>589
サービス問題だと言うことも、出題者の優しさも理解できないなら死ね。
592:132人目の素数さん
10/05/11 17:20:03
>>588
おまえそんな勉強してたから頭わるいんだよ
593:132人目の素数さん
10/05/11 17:22:45
高校生に未だ誰も分かってないこと証明させる幾何
594:132人目の素数さん
10/05/11 17:23:49
ここにいる奴って高校生しかいないの?
595:132人目の素数さん
10/05/11 17:24:30
>>589
前提は「√7は有理数か無理数のどちらか一方である」ということ。
証明したのは「√7は有理数でない」ということ。
596:132人目の素数さん
10/05/11 17:27:30
>>587
>>550,579 はそれが分からないんじゃないか?
597:132人目の素数さん
10/05/11 17:27:32
学校行かなくていいんですか?
598:132人目の素数さん
10/05/11 17:29:09
学校からiPadでアクセスしてる
599:132人目の素数さん
10/05/11 17:43:43
桁が大きい割り算ってどうやってやってますか?
うまく計算できません
600:132人目の素数さん
10/05/11 17:47:59
>>596
有効精度が3などのときも含めて、もう少し詳しく教えていただけませんか?
601:132人目の素数さん
10/05/11 17:51:17
>>599
電卓使えばいいじゃん。
602:132人目の素数さん
10/05/11 18:03:35
1+1=2を証明しろという問題なのですが、全く手がつけられません。着眼点など教えてください。
603:132人目の素数さん
10/05/11 18:05:59
>>602
1と2と+と=がどう定義されているか調べる。
604:132人目の素数さん
10/05/11 18:08:27
qと9が見分けづらいのですがどうしてですか
605:132人目の素数さん
10/05/11 18:12:31
数列{a[n]}に対してb[n]=(a1+a2+…+a[n])/nとおくとき{b[n]}が等差数列ならば{a[n]}も等差数列であることを示せ。
これの証明の仕方がわかりません。教えてください。
606:132人目の素数さん
10/05/11 18:15:56
>>605
両辺n倍して階差
607:132人目の素数さん
10/05/11 18:17:51
>>605
>>409-413
608:132人目の素数さん
10/05/11 18:21:47
>>604
音が同じなので、見た目も似せてある
609:132人目の素数さん
10/05/11 18:24:42
>>608
そりゃ日本語限定だろ
610:132人目の素数さん
10/05/11 18:38:21
数学は量が多すぎて問題を解いてると涙が出てきそうです。
わからないと腹立つし。
611:132人目の素数さん
10/05/11 18:41:14
英単語とかと比べりゃ数学なんて少ないぐらい
612:132人目の素数さん
10/05/11 18:44:54
>>611
英単語なんてせいぜい一冊、数学の方が遥かに多い。
613:132人目の素数さん
10/05/11 18:50:36
>>612
辞書まるごと覚えなきゃだめだぞ
614:132人目の素数さん
10/05/11 18:59:18
座標平面上の原点Oを中心とする円x^2+y^2=1に点(4.3)より接線をひき、二つの接点をP、Qとする。
(1)2点P、Qを通る直線の方程式を答えよ
(2)線分PQの中点の座標を答えよ。
(1)の解答の一番最初から前触れもなく
P、QはOAに関して対照であるからPQ⊥OAとあります。
何でP、QはOAに関して対称といえるんでしょうか?
615:132人目の素数さん
10/05/11 18:59:33
>>605
b[n]の公差を c とすれば一般項 b[n] = (n-1)c + b[1].
a[1]+a[2]+ … + a[n] = nb[n] = n(n-1)c + nb だから、
a[n] = nb[n]-(n-1)b[n-1] = n(n-1)c + nb - (n-1)(n-2)c - (n-1)b = 2(n-1)c + b.
よって a[n] は公差 2c の等差数列である。
616:132人目の素数さん
10/05/11 19:11:25
>>613
そこで辞書の話になるのなら、数学の書籍を片っ端からということになる。
高校生が必要な英単語なんてシケ単(←最近のは知らん)とか一冊覚えれば十分だろ。
数学の方が遥かに大変。
617:132人目の素数さん
10/05/11 19:12:59
>>605をb[n]の公差をdとしてa[n+1]-a[n]=2dになると思うんですけど、2dになりません。2dになるまでの過程を教えてほしいです。
618:132人目の素数さん
10/05/11 19:22:46
>>616
馬鹿だな
数学は覚えるものなんかないじゃないか
理解すればすむんだよ
619:132人目の素数さん
10/05/11 19:26:16
生まれながらにして1の次は2と知っていたのか
620:132人目の素数さん
10/05/11 19:31:13
>>619
そう定義しただけ
621:132人目の素数さん
10/05/11 19:37:30
このスレは馬鹿ばっかり
622:132人目の素数さん
10/05/11 19:43:48
まあ621に関する限り正しいと認めざるを得ない
623:132人目の素数さん
10/05/11 19:54:49
>>614をお願いできないでしょうか
よろしくお願い致します
624:132人目の素数さん
10/05/11 19:56:50
>>623
催促が早すぎる。
625:132人目の素数さん
10/05/11 20:03:09
>>605
前回もマルチで今回もマルチですか
両方で回答もらっても返答なしでまたマルチ
少しはルール守ってください
626:132人目の素数さん
10/05/11 20:03:31
>>624
すみませんでした。静かに回答待ってます。
627:132人目の素数さん
10/05/11 20:05:26
定点A(a,b)をとおる直線とx軸の正の部分およびy軸の正の部分で作る三角形の面積の最小値を求める問題なんですが、
微分を使ってどう解けばいいかわかりません。
どなたかお願いします。
628:132人目の素数さん
10/05/11 20:07:46
微分を使って解けと指定があったの?
629:132人目の素数さん
10/05/11 20:10:31
はみチン削り論法か
630:132人目の素数さん
10/05/11 20:17:35
>>614
> 点(4.3)
この点がAだとすると、中学幾何じゃない?
631:132人目の素数さん
10/05/11 20:24:08
>>630
書き忘れました。その点が点Aです。
ごめんなさい、幾何が苦手で・・・
何で点Aと点Oを結ぶOAに対してP、Qは対称になるんですか?
632:132人目の素数さん
10/05/11 20:27:44
>>631
線分OPとOQを引いて合同な三角形を探せ
633:132人目の素数さん
10/05/11 20:31:25
集合の演算のところの分配律の証明なんですが
x∈(A∩C)∪(B∩C)
⇒x∈A∩CまたはX∈B∩C
⇒x∈A∩BならばX∈A⊂A∪BかつX∈Cであり, ←※
x∈B∩CならばX∈B⊂A∪BかつX∈Cである. ←※
⇒x∈A∪BかつX∈C
⇒x∈(A∪B)∩C
となるので,(A∪B)∩C⊃(A∩C)∪(B∩C)が成り立つ.
※の部分の意味がわかりません.
誰かお願いします.
634:132人目の素数さん
10/05/11 20:31:55
>>632
探しました。
⊿OPAと⊿OQAがどちらも直角三角形で合同ですね。
これらが合同だと何で対称になるんですか?
635:132人目の素数さん
10/05/11 20:41:11
>>634
さらにPQも引いて合同な三角形と二等辺三角形の性質を使えば
PQ⊥OA が証明できるから
> P、QはOAに関して対称
が何のことか分からなくとも問題は解けそう。
636:132人目の素数さん
10/05/11 20:43:13
>⇒x∈A∩BならばX∈A⊂A∪BかつX∈Cであり, ←※
⇒x∈A∩CならばX∈A⊂A∪BかつX∈Cであり, ←※
637:132人目の素数さん
10/05/11 20:47:04
>>633
> ⇒x∈A∩BならばX∈A⊂A∪BかつX∈Cであり, ←※
正確に書き写せるのも力の内だよ。
⇒x∈A∩CならばX∈A⊂A∪BかつX∈Cであり,
x∈A∩Cならばx∈Aかつx∈C。ここで A⊂A∪Bはつねに成り立つ包含関係ゆえ
x∈Aかつx∈C ならば x∈A∪Bかつx∈C
638:132人目の素数さん
10/05/11 20:55:52
a,bを自然数とする、以下の問に答えよ。
(1) abが3の倍数であるとき、aまたはbは3の倍数であることを示せ。
(2) a + bとabがともに3の倍数であるとき、aとbはともに3の倍数であることを示せ。
(3) a + bと a²+b²がともに3の倍数であるとき、aとbはともに3の倍数であることを示せ。
お願いします。
教科書基本・教科書章末・標準・応用・発展でレベル分けしてください。
(1)標準
(2)標準
(3)応用
でしょうか?
639:132人目の素数さん
10/05/11 21:01:29
問.f(x)=x^nに対して、(x+1)(x-1)^2で割った余りを求めよ。
以下に自分の解答を途中まで記します。
まずf(x)を(x+1),(x-1),(x-1)^2でそれぞれ割って余りを求める。
f(-1)=(-1)^n…①
f(1)=1^n=1…②
f(x)を(x-1)^2で割った余りをax+b,商をQ(x)とするとf(x)=(x-1)^2・Q(x)+ax+b…③
②よりf(1)=a+b=1 ∴b=1-aこれを③に代入し、
f(x)=(x-1)^2・Q(x)+ax+1-a
⇔x^n=(x-1)^2・Q(x)+a(x-1)+1
⇔x^n -1=(x-1){(x-1)・Q(x)+a}
⇔(x-1)(1+x+x^2+x^3+…+x^n-1)=(x-1){(x-1)・Q(x)+a} (∵等比数列の和)
⇔1+x+x^2+x^3+…+x^n-1=(x-1)・Q(x)+a
ここでx=1を代入すると
1+1+1+…+1=a ∴a=n, b=1-a=1-n より
f(x)を(x-1)^2で割った余りは、nx-n+1
この後の処理が上手くできません。どなたか教えてください。
勿論これ以外の解法でも全然構いません。お願いします。
640:132人目の素数さん
10/05/11 21:04:01
>>635
PQはOP、OQが円の半径だからOP=OQとして等しく、⊿OPQのOからPQに引いた直線は二等辺三角形だから、
PQの中点でPQ⊥OA になるってことですね。
ただ式として理解はできたんですが、感覚的に理解できないです。
何でP、QはOAに関して対称になるんですか?
641:132人目の素数さん
10/05/11 21:10:26
>>639
f(x)=(x+1)(x-1)^2Q(x)+ax^2+bx+c とおくと
f(1)=a+b+c
f(-1)=a-b+c
f'(1)=2a+b
642:132人目の素数さん
10/05/11 21:10:38
>>638
(3)の問題が ?? になってる
643:132人目の素数さん
10/05/11 21:11:48
>>640
> P、QはOAに関して対称
とはどういうことだ?
644:132人目の素数さん
10/05/11 21:12:30
次の不等式を証明せよ。
1/3<∫[0,1]x^((sinx+cosx)^2)dx<1/2
中辺を計算していくことになるのでしょうか?
色々やってみましたが、うまくできません。
どうかよろしくお願いします。
645:132人目の素数さん
10/05/11 21:13:26
3次の回転行列ってあるんでしょうか?
導こうとしてもなかなかうまくいかなくて…