10/03/29 13:48:45
別スレが終わってしまったようなので・・・
ヒルベルト空間の元
Ψ^∞=Ψ_1・Ψ_2... (・はテンソル積、Ψ_1=Ψ_2=...はnormalizedされている)
に対して、
エルミート演算子A^nの作用を
A^nΨ^∞=A^nΨ^n・Ψ_n+1・Ψ_n+2・...
で定義します。
A^∞Ψ^∞=lim (A^nΨ^∞)
の存在は証明されているとします。
固有方程式A^∞Ψ^∞=aΨ^∞を証明するために、
||A^∞Ψ^∞-aΨ^∞||=0
を示そうとしています。