◆ わからない問題はここに書いてね 264 ◆at MATH
◆ わからない問題はここに書いてね 264 ◆ - 暇つぶし2ch504:132人目の素数さん
10/03/04 22:11:46
全単射について質問です。

全射の定義は、f:A→Bの写像について、
1.B = f(A) := { f(a) | ∀a ∈ A } というものと、
2.∃a∈A : f(a)=b (∀b∈B) というものとを見かけました。

1はわかるのですが、
2の場合は、それだけ見ると、AにはBに写らないものがあってもいいと見えますが、
それは、写像がA全体をドメインとする全域写像に限って1と一緒という理解でいいですか?

実際、全単射を考えるとき、部分写像であろうが全域写像であろうが、
あまり始域全体は気にせず、ドメインだけ考えておけばいいので
混乱することはないのですが、「全単射」という定義に全域写像であるという
前提は必要か不要かだけ確認したかったです

具体的には、 y = f(x) = log xという写像について、
これは、R→Rの写像ではなく、正数→Rの写像である、このとき、正数⊂Rの関係はあまり重要じゃない
(R→Rの部分写像と見ても、全単射と言える)
どちらにせよ、逆写像の f^-1(x) = e^xは、R→正数の全射として定義できるという考えでいいですか


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch