小・中学生のためのスレ Part 36at MATH
小・中学生のためのスレ Part 36 - 暇つぶし2ch413:132人目の素数さん
09/11/28 12:20:34
(69×n)÷54【ただし、nは正の整数】を計算したときの異なる余りの個数について、次のように調べた。ただし、割り切れるときの余りは0として、0を余りに入れる。
69と54の最大公約数dとするとd=(①)であるから、(69×n)÷54の余りは(②)の倍数であることがわかる。
そこで、(69×n)÷54の余りが、最大公約数dとなる場合があるかを調べた。

(69×n)÷54の余りがdとなる正の整数nの中で最小の整数をaとすると、a=(③)であることがわかる。
このことは、(69×a)÷54の商をqとすると、
  69×a=54×q+d
という式で表される。

n=a×2、n=a×3のとき、(69×n)÷54の余りをそれぞれ求めると、(④)、(⑤)であることがわかる。
また、nがaの正の倍数のとき、(69×n)÷54の余りが0となる整数nの中で、最小の整数はa×(⑥)であることがわかる。

これまでのことから、69の正の倍数を54で割ったときの異なる余りの個数をrとすると、r=(⑦)であることがわかる。
さらに、54<m<69である整数mで、mの正の倍数を54で割ったときの異なる余りが全部でr個になるのは、
m=(⑧)のときであることがわかる。

(①)~(⑧)にあてはまる正の整数を求めろ。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch