不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch86:132人目の素数さん
09/07/01 23:24:35
>>67

 2^(n-1) ・ 3^(n-2) … (n-1)^2 ・ n^1 = 2!・3!・・・・(n-1)!n! = m_n,
 2^2 ・ 3^3 ・ ・… (n-1)^(n-1) ・n^n = M_n,
とおくと、
 m_n・M_n = (n!)^(n+1),              ・・・・・・・・(1)
一方、補題↓ より
 M_n / e^(n(n-1)/2) < m_n < M_n / e^(n(n-1)/2),  ・・・・・・・(2)
(1)、(2)より
 (n!)^((n+1)/2) / e^(n(n-1)/4) < m_n < (n!)^((n+2)/2) / e^(n(n-1)/4),
 (n!)^(n/2)・e^(n(n-1)/4) < M_n < (n!)^((n+1)/2)・e^(n(n-1)/4),


〔補題30〕k≧2 のとき
 k^k /e^(k-1) < k! < k^(k+1) /e^(k-1),
k=2~n とおいて辺々掛けると
 M_n / e^(n(n-1)/2) < m_n < M_n / e^(n(n-1)/2),

スレリンク(math板:030-031番)
スレリンク(math板:039-042番)
東大入試作問者スレ17


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch