不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch67:132人目の素数さん
09/06/29 02:56:31
p_iをi番目に大きい素数とする。
p_(n+1)と1+Π[i=1→n]の大小関係を答えよ。

(0.99)^99 と (1.01)^(-101) の大小関係を答えよ。

sin44°とsin46°の大小関係を答えよ。

n≧2の時
1^n×2^(n-1)×…×n^1>(n・n!/2^n)^((n+1)/2)
を示せ。

1・2・2・3・3・3・4・4・4・4・5・…・n・n…・n
<(e・n!/(n+1))^(n+1)

a,b,c,dは実数で
|a|≦2 ,|b|≦2 ,|c|≦2 ,|d|≦2
a+b=1,c+d=1を満たすとする。
このとき、ac+bdの最大値と最小値を求めよ。

f(x,y,z)=zy^2x^3+yx^2+x+1(-1≦z≦y≦0≦x≦1)の最大値,最小値を求めよ。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch