不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch521:132人目の素数さん
09/10/05 01:05:53
>>519
 4(x^5 +y^5) = 2(x^2 +y^2)(x^3 +y^3) + 2(x^2 -y^2)(x^3 -y^3)
  ≧ 2(x^2 +y^2)(x^3 +y^3)
  = (x+y)^2・(x^3 +y^3) + (x-y)^2・(x^3 +y^3)
  ≧ (x+y)^2・(x^3 +y^3),
最小値 1/4, 等号成立は x=y のとき。

 (x+y)^2・(x^3 +y^3) - (x^5 + y^5) = xy(2x^3 +x^2・y +x・y^2 +2y^3) ≧ 0,
最大値 1, 等号成立は xy=0 のとき。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch