不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch507:132人目の素数さん
09/10/01 19:00:08
>>504-505 さんの解答をほとんど同じですが,より平易に書いて見ました.
文字は>>504-505 さんのものを使用します.

x,a∈[0,1],a を固定し x≠a とする.

{f(x)-f(a)}/(x-a)=f’(c) となる c が x と a の間に存在
|f’(c)|≦( |f(x)|+|f(a)| )/|x-a|≦2A/|x-a|...①

f’(c)-f’(a)=∫[a,c]f”(t)dt より
|f’(a)|≦|f’(c)|+|∫[a,c]f”(t)dt|≦|f’(c)|+|c-a| B≦|f’(c)|+B|x-a| ...②

①,② より |f’(a)|≦2A/|x-a|+B|x-a| ...③

( i ) 0≦a≦1/2 のとき
x=a+(1/2)√{A/(A+B)} とおくと 0≦x≦1 で ③ より
|f’(a)|≦4)√{A(A+B)}+(1/2)B√{A/(A+B)} ≦(4+1/2)√{A(A+B)}
( ii ) 1/2≦a≦1 のとき
( i ) とまったく同様





次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch