不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch504:132人目の素数さん
09/09/30 14:23:51
>I=[0,1],f (x) ∈ C^2 (I) とするとき,次の不等式が成り立つことを示せ.
>( max [I] | f’(x) | )^2 ≦ M ( max [I] | f (x) | ) ( max [I] | f (x) | + max [I] | f”(x) | )
>ただし,M は f に無関係な定数とする.

簡単のためA=max [I] | f (x) |,B=max [I] | f ' ' (x) |とおく。
A=0のときはf≡0だから、既に成り立っている。以下、A≠0とする。

a∈[0,1]を任意に取り、固定する。各x∈[0,1]に対して、適当なθ=θ(x)があって
f (x)=f (a)+f ' (a)(x-a)+f ' ' (θ)(x-a)^2/2
とできる。x≠aのとき、両辺を(x-a)で割って変形して
f ' (a)=(f (x)-f (a))/(x-a)-f ' ' (θ)(x-a)/2
となるから、特に|f ' (a)|≦2A/|x-a|+B|x-a|/2となる。
ここで更にt=|x-a|/2 とおけば

|f ' (a)|≦A/t+tB …(*)

となる。aを固定したままでxを[0,1]-{a}の範囲で任意に
動かすとき、tの動く範囲は

0<t<1           (a=0,1)
0<t≦max{ |a| , |1-a| }/2 (a≠0,1)

である。a≠0,1の場合については、簡単な議論によって
1/4≦max{|a|,|1-a|}/2であることが言えるので、結局、tは少なくとも
0<t≦1/4の範囲を動くことになる。また、a=0,1の場合は、tは0<t<1の
範囲を動くから、tは当然0<t≦1/4の範囲も動く。よって、いずれの場合も、
tは少なくとも0<t≦1/4の範囲を動く。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch