09/09/22 02:57:49
区間 [ 0 , 1 ] 上の任意の連続関数 f ( x ) に対して , さらに f ( x ) > 0 を満たすとき
∫ [ 0 , 1 ] log f(x) dx と log ∫ [ 0 , 1 ] f ( x ) dx
の大小を比較せよ
実数上で定義され , 実数に値をとる , 2次までの連続な導関数をもつ関数 f ( x ) が条件
f ' ' ( x ) ≧ f ( x ) ( - ∞ < x < + ∞ )
を満たす . このとき
f ( x ) ≧ f ( 0 ) cosh ( x ) + f ' ( 0 ) sinh ( x ) ( x ≧ 0 )
f ( x ) ≦ f ( 0 ) cosh ( x ) + f ' ( 0 ) sinh ( x ) ( x ≦ 0 )
となることを示せ
全ての実数 x に対して
x ^ 4 - x ^ 3 + x ^ 2 - x + ( 21 / 64 ) > 0
となることを示せ