不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch475:132人目の素数さん
09/09/21 21:28:13
>>472 (1)
 Pより右にあるA点の数 > Pより左にあるのA点の数 ⇒ Pを右へずらす。
 Pより右にあるA点の数 < Pより左にあるのA点の数 ⇒ Pを左へずらす。
したがって
 nが奇数のとき、P = A[(n+1)/2] (Median)
 nが偶数のとき、線分 A[n/2]-A[n/2 +1] 上の点。

>>473 (上)
 1/4 + 15a/{4(a+4b)} = (4a+b)/(a+4b) = 4 - 15b/(a+4b),
 1/4 + (15/16)a/(a+b+c) < (4a+b)/(a+4b) < 4 - (15/4)b/(a+b+c),
循環的にたす。
 3/4 + 15/16 < (与式) < 12 - 15/4,

(便法)
 0<y≦x ⇒ 1 ≦ (4x+y)/(x+4y) < 4,
 0<x≦y ⇒ 1/4 < (4x+y)/(x+4y) ≦ 1,
から 3/2~9。

>>474 (上)
 ∑(逆順序積) ≦ ∑(乱順序積) より
 x(1-x) + y(1-y) + z(1-z) ≦ s(1-s/3),  s=x+y+z, 0≦s≦3
∴ x=y=z (体対角線) 上で最大となる。
 (与式) = s/3 + √{s(1-s/3)}
   = (1/3){(s - 3/2) + √(s(1-s/3)) + √(s(1-s/3)) + √(s(1-s/3))} + 1/2
   ≦ (2/3)√{(s - 3/2)^2 + 3・s(1-s/3)} + 1/2   (← コーシー)
   = (2/3)√(9/4) + 1/2
   = 1 + 1/2
   = 3/2, 
等号成立は s=9/4 のとき。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch