不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch427:132人目の素数さん
09/08/25 18:56:29
>>423

軸を45゚回す。
 x^2 + (1-y)^2 = (1/2)(x+y-1)^2 + (1/2)(x-y+1)^2 = u^2 + {v + (1/√2)}^2 ≧ {v + (1/√2)}^2,
 (1-x)^2 + y^2 = (1/2)(x+y-1)^2 + (1/2)(x-y-1)^2 = u^2 + {v - (1/√2)}^2 ≧ {v - (1/√2)}^2,
よって
 √[x^2 + (1-y)^2] ≧ |v + (1/√2)|,
 √[(1-x)^2 + y^2] ≧ |v - (1/√2)|,
辺々たす。
 (与式) ≧ |(1/√2) - (-1/√2)| = √2,


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch