09/08/13 19:03:57
>>385
n≧2 のとき
1/n ≦ 3/{2(n+1)},
∴ Σ[s=3,∞) 1/(n^s) = 1/{(n^3)[1-(1/n)]}
= 1/{(n^2)(n-1)}
≦ 3/{2(n-1)n(n+1)}
= (3/4){1/((n-1)n) - 1/(n(n+1))},
よって
ζ(s) -1 = Σ[n=2,∞) 1/(n^s)
Σ[s=3,∞) {ζ(s)-1} = Σ[s=3,∞) Σ[n=2,∞) 1/(n^s)
= Σ[n=2,∞) Σ[s=3,∞) 1/(n^s)
≦ (3/4)Σ[n=2,∞) {1/((n-1)n) - 1/(n(n+1))}
= 3/8,
蛇足だが、
ζ(3) - 1 = 0.20205690315732・・・・
ζ(4) - 1 = (π^4)/90 - 1,
ζ(6) - 1 = (π^6)/945 - 1,
・・・・
を使うと
(左辺) = 0.3550659331455・・・ < 3/8,