不等式への招待 第4章at MATH
不等式への招待 第4章 - 暇つぶし2ch163:132人目の素数さん
09/07/12 18:04:00
どうも 150 です.

>>159-160 さん補足有り難うございます.


この置き方は, 例えば, USAMO の問題で,
a^2+b^2+c^2+abc=4
という関係式に対して,
a = 2√( (yz) / ((x+y)(x+z)) )
b = 2√( (zx) / ((y+z)(y+x)) )
c = 2√( (xy) / ((z+x)(z+y)) )
という置換をして解く解法があります.
これを知っていたので, 今回の解答はこれを変形して,
bc/a = (2x/(y+z))
という関係と,
a^2+b^2+c^2+abc = (ca/b)(ab/c) + (ab/c)(bc/a) + (bc/a)(ca/b) + (ab/c)(bc/a)(ca/b)
という関係から導きました.

後で調べてみたら,
ab+bc+ca+abc=4 に対して, a = 2x/(y+z), b = 2y/(z+x), c = 2z/(x+y) とおく方法は知られているものでした.


しかし, 形はどうであれ,
(a, b, c) →(f(x), f(y), f(z))
(a, b, c) →(S[x](x, y, z), S[y](x, y, z), S[z](x, y, z))
という置き方は良く行われます.


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch