09/05/16 18:24:07
>>186
まあ実数の範囲でいいのだろう。
k = xy + yz + zx とすれば、 (x+y+z)^2 = 1+2k. つまり k = ((x+y+z)^2-1)/2.
(x,y,z)は3次元の単位球面だから、x = sinφcosθ, y = sinφsinθ, z = cosφ
と書ける。これより x+y+z = (√(2sin^2Θ + 1))sinΦ (Θ、Φは適当な角).
よって -√3 <= |x+y+z| <= √3. これより -1/2 <= k <=1.