高校生のための数学の質問スレPART229at MATH
高校生のための数学の質問スレPART229 - 暇つぶし2ch665:132人目の素数さん
09/05/06 22:12:38
>>661
まず、x軸y軸を直交座標軸として書く。両軸の単位長1は同じ長さだ。
両軸の交点が原点O:(0,0)。今、原点Oを中心とする半径1の円を書く。
半径1だから、x軸とは(1,0)(-1,0)で交わり、y軸とは(0,1)(0,01)で交わる。
ここからが動径だ。点(1,0)に点Pを置き、線分OPを考える。
点Pを、円周上で、反時計周りに動かす。
すると線分OPもOを中心に反時計周りに回転する。
この回転する線分OPを「動径」と呼ぶ。
大事なことは、x軸の正方向である半直線OXと動径OPのなす角。
この角もやはり、反時計周りを正の値として測る。これを動径の偏角と呼ぶ。
半径1の円だったから円周は2πだ。だから一回り360°ををラジアンで測ると2πになる。
以後、動径OPと半直線OXのなす角はラジアンで測る。
そこで三角関数の導入だ。
点Pの座標を(X,Y)、動径OPの偏角をθとするとき、
Xをθの余弦といい、X=cos(θ)と書く。
また、Yをθの正弦といい、Y=sin(θ)と書く。
Pからx軸に下した垂線の足をAとすると点Aのx座標がXで、
y軸に下した垂線の足をBとすると点Bのy座標がYだ。
Pが第一象限にあるとき、三角形OPA、三角形OPBはどちらも斜辺の長さが1の直角三角形だ。
だから、Pが第一象限にあるときのsin、cosは中学校で習った三角関数と同じものだ。

最後にsin(θ)がどんな値をとるかだが、点Bがどこからどこまで動くかを考えると直ちに
-1≦sin(θ)≦1であることが分かる。Bはy軸上の(,0,-1)と(0,1)の間の点だから。
同様に、x軸上でのAの動く範囲を考えると、-1≦cos(θ)≦1になる。



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch