09/05/29 10:04:32
amazonの「NEWスーパーマリオブラザーズ ルービックキューブ」という商品のカスタマーレビューです。
↓
URLリンク(www.amazon.co.jp)
「3面までしか組めてません」ってありえるのでしょうか?
6面完成状態からどこでもいいから1回90度だけ動かせば、2面のみ完成状態になると思うのですが、
これが6面完成状態に最も近い状態ということを考えると、3面のみ完成した状態ってあるのかな~
と思ってしまうのですが素朴すぎるでしょうか?
数学に詳しい方お願いします。
716:132人目の素数さん
09/05/29 10:30:49
2・3・4/1+3・4・5/1+4・5・6/1+....+(n-1)・n・(n+1)/1
のやり方を教えて下さい
717:132人目の素数さん
09/05/29 12:48:53
>>716
色々間違ってるぞ。
718:132人目の素数さん
09/05/29 12:56:35
>>716
小学校の教科書嫁
719:132人目の素数さん
09/05/29 13:24:42
>>712のtypoはおいといて
>>711には是非>>712に答えてほしい。
>>714のように勘違いして納得してしまう人が増えるのも困るので。
勝手な推測では、たとえば高木の関数のように、
「連続な関数であってフラクタルとなるもの」と
空間充填曲線のイメージを微妙に間違って重ねてしまって
混乱しているのではないかと思われるのだが。
そうでなくて、空間充填曲線を利用して直線から平面への連続な全射が
本当に構築できるのであれば、それは是非とも教えて欲しい,
720:132人目の素数さん
09/05/29 13:29:32
修正
誤:「連続な関数であってフラクタルとなるもの」
正:「連続な関数であってグラフがフラクタルとなるもの」
721:132人目の素数さん
09/05/29 13:51:15
>>716
いろいろエスパーした上で...
1/{(n-1)n} - 1/{n(n+1)} = {(n+1)-(n-1)}/{(n-1)n(n+1)}
=2/{(n-1)n(n+1)}
を利用
722:132人目の素数さん
09/05/29 17:06:06
>>715
3面のみ完成状態が、どんな「2面のみ完成状態」よりゴールに近いとでも?
723:132人目の素数さん
09/05/29 17:21:49
>>715
ある
724:132人目の素数さん
09/05/29 17:27:42
>>723
このレビューによると完全な6面完成は絶対無理って読めるんだけど、数学的にあり?
少なくても反例として、ぐちゃぐちゃに回したとするその逆工程の回転で元に戻る筈な
んだけど。
725:132人目の素数さん
09/05/29 18:15:04
>>724
そんなの元にもどるに決まってるやん。
死ぬほど大変という意味で絶対無理って言ってるだけだろ
726:132人目の素数さん
09/05/29 18:17:38
>>725
そういう事かorz
727:711
09/05/29 18:58:52
>>719
直線から平面への連続な全射の構成自体は19世紀に終わっている仕事で、原著をあたれ、というのが数学のルールとしては正しいのだろうが、なにぶんフランス語やドイツ語なので読みづらい(私も読んでない)。
Peano, G. (1890), "Sur une courbe, qui remplit toute une aire plane", Mathematische Annalen 36 (1): 157?160
Hilbert, D. (1891), "Ueber die stetige Abbildung einer Line auf ein Flachenstuck", Mathematische Annalen 38: 459?460
「空間充填曲線」という単語は像がI×Iで稠密になるだけ、と719氏は勘違いしているのかもしれないが、
そうではなくて、像がI×I全体になるもののことを空間充填曲線と呼ぶ。
a space-filling curve is a curve whose range contains the entire 2-dimensional unit square
これを読んだ方がいいかも。
URLリンク(en.wikipedia.org)
URLリンク(en.wikipedia.org)
(日本語版のwikipediaにある「n次のヒルベルト曲線」という表現は不正確で、英語版にあるように「ヒルベルト曲線のn次近似」と書くべき)
728:711
09/05/29 19:02:03
>>719 つづき
ヒルベルト曲線についてなんか誤解があるかもしれないので、もう一度定義と性質を書いておくと、
定義:
正整数nに対して、曲線H_nを
URLリンク(en.wikipedia.org)
のように再帰的に定める。写像h_n: I→I×Iを
・像はH_n ・速度は一定 ・始点はH_nの左下の点 ・単射
になるように定める。
写像h: I→I×Iをh(t)=lim[n→∞] h_n(t)で定める。このhをヒルベルト曲線と呼ぶ。
性質:
0) 各tに対して、h(t)=lim[n→∞] h_n(t)の右辺は収束する。
1) 写像h: I→I×I は連続である。
2) 写像h: I→I×I は全射である。
729:132人目の素数さん
09/05/29 19:12:54
日本語版のwikipediaには本当にゴミしかないな
730:132人目の素数さん
09/05/29 22:46:00
>>722
いえ。最もゴールに近い状態というのは、2面のみ完成した状態一般を指すのではなく、
6面完成状態からどこかを1回90度だけ動かして生じる2面完成状態という意味でいっています。
>>723
結論はわかりました。ありがとうございました。
731:132人目の素数さん
09/05/30 05:26:01
>>729
特に三角関数のページが一番ゴミだよな
732:132人目の素数さん
09/05/30 11:26:59
x'=f(x) (x∈R^n,fはC^1級関数)の流れφが体積を保つ⇔div(f)=0
は成り立つのでしょうか?
733:132人目の素数さん
09/05/30 20:32:35
はじめまして
あほな私にご教授頂きたく宜しくお願いいたします
X=22÷〔250÷{100-(3X+2)}
この方程式の解き方を順を追って教えてくださいませ
宜しくお願いいたします
734:132人目の素数さん
09/05/30 20:43:48
>>733
マルチ
735:132人目の素数さん
09/05/30 20:49:56
マルチはあほ以下だ
736:132人目の素数さん
09/05/31 13:43:59
次の英文をどなたか和訳してくれませんか?
The ring of polynomials in z whose first k derivatives vanish at the origin (k being a fixed integer)
特に、"first k derivatives"がわかりません。
これは、ringがNoetherianかどうかを判定せよという問題の一部で、上のringと並列して
The ring of polynomials in z,w all of whose partial derivatives with respect to w vanish at z=0.
とあるので、"first k derivatives"がz_kの一階偏微分を意味しているのではなさそうなのです。
737:132人目の素数さん
09/05/31 13:53:17
最初のk個の導関数
f'(z)、f''(z)、f'''(z)、・・・、f''''' '''(z) 最期の '''' ''' の ' の個数はk
のこと
738:132人目の素数さん
09/05/31 14:01:24
完全に中学英語の範囲ですね。反省します。本当にありがとうございました!