くだらねぇ問題はここへ書け ver.3.14(62桁略)0781at MATH
くだらねぇ問題はここへ書け ver.3.14(62桁略)0781 - 暇つぶし2ch701:132人目の素数さん
09/05/29 01:15:29
いやさすがに高校生か

702:132人目の素数さん
09/05/29 01:17:54
背伸びしてる中学生だとおもうなあ

703:132人目の素数さん
09/05/29 01:19:12
>>701
でも定積分のまえに微分はやってるんでしょ?
 (d/dx)sin(x)|x=0 = lim[h→0]sin(h)/h = cos0 = 1 は 0/0だから不定、となるのかなあ。


704:132人目の素数さん
09/05/29 01:19:17
教えてください;;
大学生です^;^

705:132人目の素数さん
09/05/29 01:20:04
>>699
>(π/4n)/(sinπ/4n)が0/0になってしまと思い

確かに分子分母ともに0に収束するのですが
その比は1に収束するのです
700さんが書いた極限は非常に有名な極限です

706:132人目の素数さん
09/05/29 01:28:28
>>696
可能なことを示すんだから、制約を緩めた方が楽だろ

xを十進無限小数表現で表して、
小数点以下偶数桁のみを拾って作った無限小数で表される値をs
小数点以下奇数桁のみを拾って作った無限小数で表される値をtとして、
u=yとすれば、題意を満たす写像ができる。

>>697
空間充填曲線の話と、平面領域から空間領域の上への連続関数が作れる話が
結びつかないのだけど...

707:132人目の素数さん
09/05/29 01:37:02
有難う御座いました。
解りました、多謝です

708:132人目の素数さん
09/05/29 01:52:11
ちなみに、
>>691は、
>>689の問題文から「不連続であってもかまわない」と読めたという意味ではなく、
「不連続であってもかまわない」と解釈しないと、そのような写像は存在しない
のではないかと思ったため、そういう意図なのだろうと判断したということなのだが、
どうも>>697氏あたりは、連続な写像で実現可能だという見解のようなので、
是非その写像の構成方法をお教えいただきたく。

709:132人目の素数さん
09/05/29 02:30:34

円周率が乱数だと聞いたことあるけど証明されてんの?
SQORT(2)とかは乱数じゃないの?
数式で乱数つくれんの?

魔法陣って無限に存在すんの?
三次元の魔法陣ってあるの?

エイトパズルはどんなものでも解があるの?
16-1パズル
25-1パズル
36-1パズル
 ・    ・
n*n-1パズル
って具合に無限に存在して、必ず解けるの?

直交構造を抜かして
二次元を正多角形で隙間無く埋められるのはいくつある?
三次元では正多面体で隙間無く埋められる多面体は存在する?

疑問はあるけど、ホントなのかわからないことってずいぶんある。



710:132人目の素数さん
09/05/29 02:39:42
>>709
お前はなんでなんでマンか

711:132人目の素数さん
09/05/29 04:08:54
>>706 >>708
I=[0,1]とする。
f: I→I×I を連続な全射(つまり空間充填曲線)とし、
id: I→I を恒等写像とすれば、
写像の直積 id×f: I×I→I×(I×I) は連続な全射である。

空間充填曲線の構成法はたとえばこれ。
URLリンク(ja.wikipedia.org)


712:132人目の素数さん
09/05/29 04:31:26
>>711
空間充填曲線と
>連続な全射f: I→I×I を連続な全射
ってのは、じぇんじぇん関係ないと思うんだが。
試しに、そのヒルベルト曲線を使って
直線から平面への連続な全射を構築してみせてくれよ。


713:132人目の素数さん
09/05/29 04:33:28
> 連続な全射f: I→I×I を連続な全射

えらい省略の仕方するね、おまえw

714:132人目の素数さん
09/05/29 08:52:19
>>711
おおっ!そんなものがあったのか!
勉強不足でした

715:132人目の素数さん
09/05/29 10:04:32
amazonの「NEWスーパーマリオブラザーズ ルービックキューブ」という商品のカスタマーレビューです。

URLリンク(www.amazon.co.jp)


「3面までしか組めてません」ってありえるのでしょうか?
6面完成状態からどこでもいいから1回90度だけ動かせば、2面のみ完成状態になると思うのですが、
これが6面完成状態に最も近い状態ということを考えると、3面のみ完成した状態ってあるのかな~
と思ってしまうのですが素朴すぎるでしょうか?
数学に詳しい方お願いします。

716:132人目の素数さん
09/05/29 10:30:49
2・3・4/1+3・4・5/1+4・5・6/1+....+(n-1)・n・(n+1)/1

のやり方を教えて下さい

717:132人目の素数さん
09/05/29 12:48:53
>>716
色々間違ってるぞ。

718:132人目の素数さん
09/05/29 12:56:35
>>716
小学校の教科書嫁

719:132人目の素数さん
09/05/29 13:24:42
>>712のtypoはおいといて
>>711には是非>>712に答えてほしい。
>>714のように勘違いして納得してしまう人が増えるのも困るので。

勝手な推測では、たとえば高木の関数のように、
「連続な関数であってフラクタルとなるもの」と
空間充填曲線のイメージを微妙に間違って重ねてしまって
混乱しているのではないかと思われるのだが。
そうでなくて、空間充填曲線を利用して直線から平面への連続な全射が
本当に構築できるのであれば、それは是非とも教えて欲しい,

720:132人目の素数さん
09/05/29 13:29:32
修正
誤:「連続な関数であってフラクタルとなるもの」
正:「連続な関数であってグラフがフラクタルとなるもの」

721:132人目の素数さん
09/05/29 13:51:15
>>716
いろいろエスパーした上で...

1/{(n-1)n} - 1/{n(n+1)} = {(n+1)-(n-1)}/{(n-1)n(n+1)}
=2/{(n-1)n(n+1)}
を利用

722:132人目の素数さん
09/05/29 17:06:06
>>715
3面のみ完成状態が、どんな「2面のみ完成状態」よりゴールに近いとでも?

723:132人目の素数さん
09/05/29 17:21:49
>>715
ある

724:132人目の素数さん
09/05/29 17:27:42
>>723
このレビューによると完全な6面完成は絶対無理って読めるんだけど、数学的にあり?
少なくても反例として、ぐちゃぐちゃに回したとするその逆工程の回転で元に戻る筈な
んだけど。

725:132人目の素数さん
09/05/29 18:15:04
>>724
そんなの元にもどるに決まってるやん。
死ぬほど大変という意味で絶対無理って言ってるだけだろ

726:132人目の素数さん
09/05/29 18:17:38
>>725
そういう事かorz

727:711
09/05/29 18:58:52
>>719
直線から平面への連続な全射の構成自体は19世紀に終わっている仕事で、原著をあたれ、というのが数学のルールとしては正しいのだろうが、なにぶんフランス語やドイツ語なので読みづらい(私も読んでない)。
Peano, G. (1890), "Sur une courbe, qui remplit toute une aire plane", Mathematische Annalen 36 (1): 157?160
Hilbert, D. (1891), "Ueber die stetige Abbildung einer Line auf ein Flachenstuck", Mathematische Annalen 38: 459?460

「空間充填曲線」という単語は像がI×Iで稠密になるだけ、と719氏は勘違いしているのかもしれないが、
そうではなくて、像がI×I全体になるもののことを空間充填曲線と呼ぶ。
a space-filling curve is a curve whose range contains the entire 2-dimensional unit square

これを読んだ方がいいかも。
URLリンク(en.wikipedia.org)
URLリンク(en.wikipedia.org)
(日本語版のwikipediaにある「n次のヒルベルト曲線」という表現は不正確で、英語版にあるように「ヒルベルト曲線のn次近似」と書くべき)


728:711
09/05/29 19:02:03
>>719 つづき
ヒルベルト曲線についてなんか誤解があるかもしれないので、もう一度定義と性質を書いておくと、

定義:
正整数nに対して、曲線H_nを
URLリンク(en.wikipedia.org)
のように再帰的に定める。写像h_n: I→I×Iを
・像はH_n ・速度は一定 ・始点はH_nの左下の点 ・単射
になるように定める。
写像h: I→I×Iをh(t)=lim[n→∞] h_n(t)で定める。このhをヒルベルト曲線と呼ぶ。

性質:
0) 各tに対して、h(t)=lim[n→∞] h_n(t)の右辺は収束する。
1) 写像h: I→I×I は連続である。
2) 写像h: I→I×I は全射である。

729:132人目の素数さん
09/05/29 19:12:54
日本語版のwikipediaには本当にゴミしかないな

730:132人目の素数さん
09/05/29 22:46:00
>>722
いえ。最もゴールに近い状態というのは、2面のみ完成した状態一般を指すのではなく、
6面完成状態からどこかを1回90度だけ動かして生じる2面完成状態という意味でいっています。

>>723
結論はわかりました。ありがとうございました。

731:132人目の素数さん
09/05/30 05:26:01
>>729
特に三角関数のページが一番ゴミだよな

732:132人目の素数さん
09/05/30 11:26:59
x'=f(x) (x∈R^n,fはC^1級関数)の流れφが体積を保つ⇔div(f)=0

は成り立つのでしょうか?

733:132人目の素数さん
09/05/30 20:32:35
はじめまして
あほな私にご教授頂きたく宜しくお願いいたします

X=22÷〔250÷{100-(3X+2)}

この方程式の解き方を順を追って教えてくださいませ
宜しくお願いいたします

734:132人目の素数さん
09/05/30 20:43:48
>>733
マルチ

735:132人目の素数さん
09/05/30 20:49:56
マルチはあほ以下だ

736:132人目の素数さん
09/05/31 13:43:59
次の英文をどなたか和訳してくれませんか?
The ring of polynomials in z whose first k derivatives vanish at the origin (k being a fixed integer)

特に、"first k derivatives"がわかりません。
これは、ringがNoetherianかどうかを判定せよという問題の一部で、上のringと並列して
The ring of polynomials in z,w all of whose partial derivatives with respect to w vanish at z=0.
とあるので、"first k derivatives"がz_kの一階偏微分を意味しているのではなさそうなのです。

737:132人目の素数さん
09/05/31 13:53:17
最初のk個の導関数
f'(z)、f''(z)、f'''(z)、・・・、f'''''  '''(z)  最期の '''' ''' の ' の個数はk
のこと


738:132人目の素数さん
09/05/31 14:01:24
完全に中学英語の範囲ですね。反省します。本当にありがとうございました!


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch