面白い問題おしえて~な 十五問目at MATH
面白い問題おしえて~な 十五問目 - 暇つぶし2ch708:132人目の素数さん
09/06/10 01:46:26
>>686のi)
閉曲線C上の任意の点をAとする。
閉曲線C上のAから一番遠い点(閉曲線上の距離ではなく、空間中の直線距離)をBとする。
(もし一番遠い点が複数あるなら、そのうちのどこでもいいので1点を選ぶ)
Pは閉曲線C上を移動する点である。

線分APの中点MでAPに垂直に交わる平面S上にMを中心とした半径AB*((√3)/2)の円Rを描く。
閉曲線Cと平面Sとの交点Qについて
・C上の点AとPは、平面Sのそれぞれ異なる面側にあるので、CとSの交点Qは存在する。
・CとSの交点はCが閉曲線であるから、必ずふたつ以上存在する。それぞれの点をQ[n](n=1,2,...)とする。

・PがAの十分近傍にあるときには、交点Q[1..n]のひとつはMにあり、他の交点はRの外にある。
・PがBにあるときには、交点Q[1..n]は全て周上を含むRの内側にある。
 (もしRの外に交点があるなら、BがAから一番遠い点だということに矛盾する)
・PがAからBまで移動する間、CとSの交点Q[1..n]のうち少なくともひとつは一度以上、円Rの周上を通る。
 (ここは厳密性に欠けるけど、まあわかってもらえると思う)
・円Rの周上に交点Q[m]があるとき、APQは正三角形である。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch