線形代数/線型代数 5at MATH
線形代数/線型代数 5 - 暇つぶし2ch165:160
08/12/31 17:27:52
A=2*Eは解ではなかった…orz。>>161さんの解がジョルダンの標準形っぽいので以下のようにこじつけてみました↓

まず >>159 を、「Aを3次正方実行列、Eを3次単位行列、Oを3次正方零行列とするとき、
(A - 2*E)^2 (A - 3*E) = O , A ≠ 2*E , A ≠ 3*E のAを求める」という問題におきかえると、

どんなAでも ある3×3正規直交行列Pとジョルダンの標準形A'を用いて A = P A' P^{-1}
と書ける事より、E = P P^{-1} をふまえると、(A - 2*E)^2 (A - 3*E) = P (A' - 2*E)^2 (A' - 3*E) P^{-1} = O
なので (A' - 2*E)^2 (A' - 3*E) = O とならなければならず、これを満たすジョルダンの標準形A'が

>>161さんの解となることから、任意の3×3正規直交行列Pについて A = P (>>161) P^{-1} が求める解となる。
…という感じでどうでしょうか?ジョルダンの標準形じゃなくても A = diag([2,2,3]) で満たすと思うけど、
もっと一般化でまとめるにはどう言ったらいいのかなぁ。と思た


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch