09/03/29 08:56:06
[編集] 減法の崩壊
証明が崩されてしまうもう一つのパターンは単に 1 - 0.999… が存在しないのかどうか、
という点である。なぜなら、減法は必ずしも可能でないからである。加法の演算をもつが、
減法をもたない数学的構造は、可換半群、可換モノイド、半環 (semiring) を包括している。
リッチマンは 0.999…<1 となるようにデザインされた、その様な2つの構造を考えた。
まず、リッチマンは負でない decimal number を文字通り小数展開となるように定義する。
彼は辞書式順序と加法を定義した。ここでは 0.999… < 1 である事に注意する。なぜなら単に、
一の位において 0 < 1 となるからである。しかし、どんな「無限小数」 x に対しても
0.999… + x = 1 + x である。だから、decimal number に特徴的な一つの事は、加法が必ずしも
打ち消しあわないという事であり、もう一つは 1/3 に対応する decimal number は存在しないと
いう事である。乗法を定義すると、decimal number は正値全順序可換半環をなす[38]。
乗法を定義する際、リッチマンはまた、"cut D" と呼ばれる別の構造を定義する。これは
小数の切断の集合である。通常この定義は実数を導くが、彼は小数 d に対して、
切断(-∞, d ) と "principal cut" (-∞, d ] の両方を許す。その結果、実数たちは小数と
「不安定な状態で共存する(living uneasily together with)」事になる。従って、
再び 0.999… < 1 を得る。"cut D" には正の無限小は存在しないが、"一種の負の無限小" 0- が
存在する。0- には小数展開は存在しない。彼は0.999… = 1 + 0- であると結論したが、
一方、方程式 "0.999… + x = 1" は解をもたない[39]。