数検各級の対策 3at MATH
数検各級の対策 3 - 暇つぶし2ch751:132人目の素数さん
10/04/14 21:05:09
>>749
スレリンク(math板)

752:ひめ*
10/04/14 22:28:17
4月11日の準2級、2次の解答とかUPしてくれる方いませんかねー?

753:132人目の素数さん
10/04/14 22:40:47
問題出したら誰かが解いてくれる

754:132人目の素数さん
10/04/14 23:49:06

問題って誰も書いてないみたいですけど、勝手に書いても大丈夫なものですかね…?


755:132人目の素数さん
10/04/15 13:03:09
>>752 準2級以下は扱うに足らない。

756:132人目の素数さん
10/04/15 13:33:40
>>752
(1)  5
(2) ど忘れして自信ない
(3)  (2x+1)の二乗を4で割ったら1余る的なことを書いた
(4) 10角形
(5) y=1/2x(8-x)
(6) y=1/2(x=1)
(7) 自信ない
(8) 7
(9) 18
(10) a=1 b=2

757:132人目の素数さん
10/04/15 13:39:19
(7)もあってるかな
直径24cmのボールの体積を求めよ
ただし円周率は3.14とする

4πr3乗 / 3   r=12 π=3.14

7234.56

758:132人目の素数さん
10/04/15 17:17:50

2級2次受けた人解答教えてください(^ω^)



759:132人目の素数さん
10/04/16 14:21:33
準1の2次の確率の解答お願いします

760:132人目の素数さん
10/04/16 15:24:58
そのうち数検HPにUPされるから待っていなさい。

761:132人目の素数さん
10/04/17 17:21:48
2級の2次の第1問って、1:2√2じゃないの?

762:132人目の素数さん
10/04/17 17:45:50
なんでそう思うの?

763:132人目の素数さん
10/04/17 21:46:54
普通に計算したら、そうなるから。

764:132人目の素数さん
10/04/17 21:50:32
26のおっさんが、人生初の数学検定受けてきた。

準1級1次 楽勝満点 2次死亡おわたww
【1次】
1.x + (1/x) ≦ -2 、 2 ≦ x + (1/x)
2.√(n+1) - 1
3.0
4①.
    (-14 , 20)
    ( -4 . 6)

 ②.
    (-7 , 9)
    (-3 . -1)
5①.(e^x)/(log3) + C
 ②.(e - 1)/(log3)
6.t=1
7.2/(1 - sin2x)

【2次】
1.x^5=1から、(x - 1)(x^4 + x^3 + x^2 + x + 1) = 0
  ここで、x^4 + x^3 + x^2 + x + 1 = 0 の両辺をx^2で割って
  x + (1 + x) = t とおいて、因数分解していく。のだが、
  問題文をキチンと読まず、普通に、定石のドモルガンを使用して、死亡ww
3(1).とりあえず代入したがわからず、根拠もなく、sin^nθ、cos^nθで係数比較ww
   α = t
   β = (1 - t^2)/2
 (2).3項間漸化式で、一般項もとめるだけなのに、文字式がたくさん出てきて混乱
6.たぶん、a = d , b = c = 0 が正解?
  だが、なぜが、a ≠ d と記述ww
7(1)おなじみの方法で、1/(x-1)^2
 (2)二回次数下げで力技でといて、(x^2+x)/(1-x)^3

765:132人目の素数さん
10/04/17 22:08:36

私も1:2√2になりました(^ω^)



766:132人目の素数さん
10/04/17 22:54:13
>>765
どういう計算で?

767:132人目の素数さん
10/04/17 23:37:16
>>764
1次の5はeじゃなくて3だよ

768:132人目の素数さん
10/04/18 00:00:34
>>767
失敬。ほとんだ。1次も危うくなってきたじゃねーか。
試験1分前に、ノートにメモしてあった暗記した公式なのに、これはヒドイ。

769:132人目の素数さん
10/04/18 00:07:47
>>764
私も26で初めて数検受けました!
理由は会社から資格手当が出るという理由で。

2次の一問目、打ち間違いだと思うのですがx+(1/x)=tと置くんですよね?
私は相反方程式知らなくて解けず、帰ってから解いたのですが・・・。
実力不足を感じました。

770:132人目の素数さん
10/04/18 01:53:33

4/3πr^3に1/2と1/√2を
それぞれ代入して
1/6:2/3√2になって、
両辺6倍しました(・ω・`)



771:132人目の素数さん
10/04/18 14:07:35
↑全く一緒

1:3√3の人はどういう考え方?

772:132人目の素数さん
10/04/18 20:16:49
やべー

1:3√3かもしれん

1:2√2って書いたら、途中点もらえるかな?



773:132人目の素数さん
10/04/18 22:04:44
数検は過去1年分くらい過去問題を公開すべき
そうすれば受験者が増える

774:132人目の素数さん
10/04/18 22:56:19
>>771
S1の半径が1/2、S2の半径が√3/2 だろ?
級の体積比は半径の長さの比の3乗だろ?
(1/2)^3:(√3/2)^3=1:3√3

775:132人目の素数さん
10/04/18 23:20:05
>>773
どうせなら、発見Ⅰのようなもの(過去7回分の問題+途中計算付きの解答)にしてほしいのです。

776:132人目の素数さん
10/04/18 23:28:33
発見Ⅰ購入したけど、ただ挫折感をもっただけになってしまった。
だれか、3500円で買ってけろ。

777:132人目の素数さん
10/04/19 01:34:48
>>776
今回は簡単でしたし、そうでなくとも近頃は易化していました。挫折するのはまだ早いかも知れません。それにしても、値段が…

778:132人目の素数さん
10/04/19 04:33:45
発見全部やったのに易化で萎えた

受かればいいんだけど、あの時間は…

779:132人目の素数さん
10/04/19 06:31:32

あー半径から間違えました(`・ω・´)

問い2はどうなりましたか?(;_;)


780:132人目の素数さん
10/04/19 09:59:27
>>779
三角形の面積は (1/2)x(a-x) と表せる

(1/2)x(a-x)>(a-1)/2
x^2-ax+a+1<0
(x-1)(x-a+1)<0

a-1>1 すなわち a>2 の場合 1<x<a-1
a-1<1 すなわち a<2 の場合 a-1<x<1


781:132人目の素数さん
10/04/20 19:43:51
>>772
根本的に考えかた間違ってるぽいから、0点じゃないか?
もらえたとしても、すずめの涙程度と考えるのが妥当だろう。

782:132人目の素数さん
10/04/20 23:06:40
部分点は0.5点しかないよ。

783:132人目の素数さん
10/04/21 20:20:31
解答キタナリ

784:132人目の素数さん
10/04/21 21:02:41
途中の考え方が少し違っていても、答えが合っていれば、点くれるよね?

785:132人目の素数さん
10/04/21 21:32:48
模範解答の通りに解いていなくても当然点はくれる、当たり前だろ
ただあまり高度な解法で解くと採点者に理解してもらえない可能性はある
数検の採点者は低脳で有名(バイトと聞いたことがある)

786:132人目の素数さん
10/04/22 00:18:32
>>782
うそつくな。過去に受験したが、5点中3.6点だったぞ

>>784
模範と違うからといって減点される理由はないよね。
ただ、根拠がおかしいとか、適当にかいて答えあっててもどうだろう

>>785
昔、3年前くらいかなあ、HPでバイト募集みたことあるよw 今はどういう体制かわからんが
低脳ってそんなにひどいんか・・・なにか根拠は。。。?


787:132人目の素数さん
10/04/22 01:03:54
>なにか根拠は。。。?

あるよ。
俺の実体験。
しかし詳細を言うと数検財団に特定されるので控える。
採点者に限らず作問者も低脳。
スレリンク(math板)

788:132人目の素数さん
10/04/22 06:30:52
解答だけ見たんだけど
準1って本当に高3向け?
これが出来る高3は全国にどれだけいるの?

789:132人目の素数さん
10/04/22 11:22:07
3000人くらいは・・・

790:132人目の素数さん
10/04/22 17:45:37
今回の2級2次の⑤の場合、適当にabcを当てはめてみたら、条件と一致したので、先に(2)の答えを書き、その答えをもとに(1)を解くみたいなことをしたら、本当に1点満点もらえるのだろうか?

(2)は答えのみなので、点はくれるだろうが、(1)はどうなのだろう?

791:132人目の素数さん
10/04/22 17:53:37
4/11の新着解答を見る限り、今回の準一の2次は難化した?
問題によっては地方国立理系の入試レベルくらいあるような…
そういえば問3の模範解答に高校数学課程では禁じ手の
特性方程式が思いっきり使われててワロタw


792:132人目の素数さん
10/04/22 21:39:07
>>773 いや,漢検協会のように,数学(算数)学習ステップなどの受検参考書等を発行すべきだろう。
>>788 大学・一般程度と思われます。

793:132人目の素数さん
10/04/22 21:50:29
>>791
指導要領の縛りとか関係ないしいいんでは?
てか、受験で特性方程式使ったような記憶があるんだが

794:132人目の素数さん
10/04/22 22:32:32
白チャのみで準一突破できるのか?
センター9割突破できるのか?

795:132人目の素数さん
10/04/22 22:40:08
準1級ムズすぎワロタwwwwwwwwwwww

796:132人目の素数さん
10/04/22 23:49:33
>>795
難しいと、2.4点に届かなくても、合格者の幅を広げてくれないよなぁ~。
俺は、準1級は、これくらいの難しさが相応だと思った。
2次たぶん落とした俺が言うのもあれだけど。

>>791
3項間漸化式とか、フィボナッチ数列を学習したことがあれば、
あっさりとけるんだがな。

797:132人目の素数さん
10/04/23 00:51:29
1級の1次試験の合格ラインって毎回同じ?

798:132人目の素数さん
10/04/23 18:12:16
>>797
少なくとも、ここ最近はおなじ。

解答訂正キタナリ

799:132人目の素数さん
10/04/24 14:34:25
>>791
同じく難化したと思った(2次)

>>788
数学好きな奴らなら出来ると思うけど
そんなには居ないと思う


800:132人目の素数さん
10/04/24 14:46:31
>>790
(2)は最小のcがそれっていう理由が必要だし
(1)はa+b+c以外が7で割り切れちゃだめっていう理由も必要

これが書いてあれば1点満点じゃないかな?


それより解答見てみたら
無限等比級数の問題の解答あんなに簡単だったのね…
微分は思いつかんわ…


801:132人目の素数さん
10/04/24 16:24:31
>>800
無限等比級数の問題は、拍子抜けした。
たぶん、S = ∑(等差)×(等比r)とおいて、「S - rS」で計算した輩が
たくさんいたと思う。

802:132人目の素数さん
10/04/25 03:19:36
拍子抜けの使い方ちげぇw

803:132人目の素数さん
10/04/25 10:03:12
数Ⅲまでやったけど、Cは完全に忘れた。

こんな理転した文系大学生は、準1級は難しいかな?無難に2級目指したほうがいい?
一応数ⅠA、ⅡBはできると自負しているし、Ⅲもある程度はできると思うんだ。

804:132人目の素数さん
10/04/25 10:08:41
間違えた・・
文転したんです。すいません

805:132人目の素数さん
10/04/25 12:46:49
>>803
1次に行列と2次曲線が同時に出てきたり、行列の必須問題が2次に出てきたり
すると死亡します。Cを思い出せないのであれば、無難に2級を目指した方が良
いと思います。


806:132人目の素数さん
10/04/25 14:00:40
>>803
無難にっていうなら2級でいいんじゃないかな。
ただ、Cが無くても他の問題を完璧を落とせるなら準一でも大丈夫と思う
Cが無くても最低合格点はなんとか取れるんじゃないかな?

自分は数Ⅲかじった程度の学力(もちろん数Cはやってない)で
今回の2次はなんとかうかったっぽいし
数ⅠA,ⅡB,Ⅲだけでもいけると思うよ!

807:132人目の素数さん
10/04/25 17:50:56
7月までにCを勉強すればいいじゃん
Cの範囲なんて少しだけだぞ

808:132人目の素数さん
10/04/25 20:18:06
準1級2次大問1がわからないから、とりあえず、何か書いとけ精神で、
z=r(cosθ+isinθ)て置いて、ドモアブルから、z=1
だけ求めたけど、部分点もらえるかどうか、気になる。
部分があるかどうか、おらの合否が決まってくる。

問題文には、「ただし、三角比を用いてはいけません。」って
書いてあるから、ドモアブルを使用した時点で、「0点」くらうのかなぁ。

809:132人目の素数さん
10/04/25 20:54:19
>>808
問題を見たわけではありませんが、「1の5乗根を求めよ」というような問題
でしょうか。もしそうだとすると、複素解析の知識を封じるために「ただし、
三角比を用いてはいけません。」と書いてある可能性が高いです。よって、
0点の可能性が高いと思います。

準1級2次第7問と、1級2次第2問を比較すると、準1級がかわいそう
になります。

810:132人目の素数さん
10/04/25 22:57:27
803です。みなさんありがとう。
微妙なようなので、問題集や過去問などをみて判断したいと思います。

811:132人目の素数さん
10/04/26 19:55:29
そしてその問題集や過去問の大部分は役に立たないのであった。

812:132人目の素数さん
10/04/26 22:44:04
数検会員って3回分*2階級しか送ってくれないんだな
5年分くらい収めた冊子を送ってくれてもいいのに…って思ったけど
それじゃ来年度更新しないからなのか。

813:132人目の素数さん
10/04/27 06:47:52
>>812 >>792の1行目参照

814:132人目の素数さん
10/04/28 13:48:31
なんか今日から合否確認ができるみたいだぞ。
準1級受かってた。。。とりあえず良かったわ

815:132人目の素数さん
10/04/28 14:55:47
おめ

816:132人目の素数さん
10/04/28 17:43:07
2級合格したwwwあれで合格とか2級ぬるすぎワロタwww

817:132人目の素数さん
10/04/28 19:19:05
準一級二次の合格ラインはどれくらいですか?
2010/04/11の準一級二次で必須問題全問解が一致して、問題4の(1)の解が一致したのに落ちてたんですが。
悔しくて書いてしまいました。

818:132人目の素数さん
10/04/28 19:58:13
>>817
4題の60%程度だから2.4点くらいでは?
だから817の場合だとかなり際どい
あと解法の過程も点数に含まれるから答えが一致したからと言って必ずしも満点もらえるとは限らない

819:817
10/04/28 20:05:59
>>818
そうなのですか・・・。
解が一致していたので大丈夫かと思っていただけに残念でなりません。
ご回答ありがとうございました。
次は満点取る気持ちで受検します。

820:132人目の素数さん
10/04/28 23:06:51
2級受かってた~
よかったよかった

821:132人目の素数さん
10/04/28 23:31:42
準一の二次で問8,6が自称完で
問3が(1)だけできた状態でしたけどなんとか受かってました

つまり2完半になるんですけど疑問点が…
問3の(1)のα,βを求める問題で
α=t,β=sinθcosθ と書いてしまって
本当はβもtの式で表していないといけないと思うんですけど…
そうなると実質2完半半?
(2)はボロボロだったので部分点ないはずなのでそれで受かってたってことは…?

結論→数検!!解答を見してくれ!


822:132人目の素数さん
10/04/29 00:12:12
>>821
俺なんて1完しかしてないのに合格だよ
予想以上に部分点くれたんだな~

823:132人目の素数さん
10/04/29 11:15:06
点数書いたやついつごろ送ってくるかな?

824:132人目の素数さん
10/04/29 13:32:08
>>822
じゃあ>>819は部分点が削られすぎたのか…



825:132人目の素数さん
10/04/29 18:08:38
今回(4/11)、合格していたので合格者登録をしてみたいのだけど、faxで送ってからすぐに数検のサイトに掲載されるの?
それとも更新は月に一度くらいなの?
あと、あそこに書いてある日付は何の日付?試験の日、ではなさそう(平日が含まれている)だし、
faxを送った日でもなさそう(同じ日付が多い)なんだが、、、。

826:132人目の素数さん
10/04/29 23:42:53
問題がみたいな

827:132人目の素数さん
10/04/29 23:45:28
>>825
日付や過去の経験から察するに、合格証書に記されている合格日をホーム
ページ上に載せているものと思われます。


828:132人目の素数さん
10/04/30 09:25:23
いつおくってくるんだ・・・

829:猫は雑魚 ◆ghclfYsc82
10/04/30 09:46:36
ちょっと参考までに。



--------------------
73 名前:132人目の素数さん[] 投稿日:2007/12/23(日) 12:49:18
にちゃんねらーに個性はないが次の点は言える。

1.アンチ権力ではない。それほどの度胸は無い。
2.アンチ権力をからかって楽しむ。結果的に権力の思う壺。
3.弱いものと見ると寄ってたかっていじめぬく。学校でいじめられた
  腹いせ。匿名だからありがたい。
4.強いものには本質的に弱い。一見強気を挫くにみえるが、そんな
  恐ろしいことは到底できない。
5.政治に参加できるほど成長していない。選挙は棄権。
  なりゆきまかせ。


830:132人目の素数さん
10/05/01 01:09:00
gg

831:132人目の素数さん
10/05/01 01:27:31
>>825
何級に受かったの?

832:132人目の素数さん
10/05/04 13:54:07
11月に準一受けようと思います。
今は高校のチャート式の数III・Cと大学時代の微積の教科書と創育社の問題集で勉強しています。
やっぱり見直しが必要ですかね。
というより、10月にある情報処理技術者試験を受験したほうががいいかも…。
さすがに忙しくて2つの試験には備えられない…。

833:132人目の素数さん
10/05/04 15:33:36
>>832
準一は7月にもやってるよ

834:132人目の素数さん
10/05/05 23:27:41
>>833
7月25日は放送大学の試験があって受けられないんですよ。
とりあえず放送大学の試験が終わってから本格的に勉強します。

835:132人目の素数さん
10/05/10 01:37:02
白チャ85%のマスターだと何級まで対応でける?

836:132人目の素数さん
10/05/11 20:42:22
>>835
色によります。

837:132人目の素数さん
10/05/12 03:42:44
>>835
数1A、2B、3Cのどの辺りまでやったかによってチャレンジ級は
変わってくると思いますけど
白チャとはいえ完全に理解してたらら2級から挑戦できるかと。
準一級だったら黄チャ以上とあと1対1対応の演習くらいやっておけば
対策としてよいですよ。

838:132人目の素数さん
10/05/13 16:57:34
>>795-796 数検準1級は漢検準1級と同程度(合格率10%程度)の難易度がよい。

839:132人目の素数さん
10/05/14 21:29:09
2級3回目で受かったが準一級なんて受かる気がしない

840:132人目の素数さん
10/05/17 23:58:52
準1の皆さん、勉強方法どれですか?
1)数検会員になって過去問ゲッツ
2)形式が古いけど創育の問題集やる
3)他の級もセットだけど完全対策買う
4)数検とは関係ない問題集(チャートなど)

複数組み合わせる人が多いと思いますが

841:132人目の素数さん
10/05/21 15:33:52
>>840

俺は準1と1級の過去問が一緒になってる本と高校時代の青チャートで受かったよ。
たぶん黄チャートが完璧にできれば今の準1なら受かると思う

842:132人目の素数さん
10/05/21 15:57:44
確かに黄チャートがちょうどいいかもね
前回の準1に白チャ一本で挑んだら一次6.5/7.0だったけど二次1.5/4.0で落ちたわorz

843:132人目の素数さん
10/05/21 22:40:50
1次は白でも受かるけど
2次は青チャじゃないと厳しいんじゃない?

844:132人目の素数さん
10/05/22 15:14:08
網羅系の後にまた網羅系やっても効果薄いんじゃね
白チャやったんならチャート以外やった方がいいんじゃね

845:132人目の素数さん
10/05/23 10:06:02
こんど2級受けようと思います。
お勧めの参考書とかあれば教えてください。
よろしくお願いします。

846:132人目の素数さん
10/05/23 16:03:10
>>844
両方やるんじゃなくて、最初から青をやれって言ってるのでは?

847:132人目の素数さん
10/05/23 21:38:54
>>840
エスアールマトリックスを使いました。加えて、青チャートも使用しました。

>>845
URLリンク(www.amazon.co.jp)
%E5%8E%BB%E5%95%8F%E9%A1%8C%E9%9B%862%E7%B4%9A-%E6%95%B0%E6%A4%9C%E8%
B2%A1%E5%9B%A3/dp/4882299267/ref=sr_1_2?ie=UTF8&s=books&qid=127461786
9&sr=1-2
URLリンク(books.rakuten.co.jp)
%83%B3%E3%81%AE%E6%95%B0%E5%AD%A6%E6%A4%9C%E5%AE%9A%E3%82%B9%E3%83%86
%E3%83%83%E3%83%97%E3%82%A2%E3%83%83%E3%83%97%E5%95%8F%E9%A1%8C%E9%9B
%86%EF%BC%882%E7%B4%9A%EF%BC%89-%E3%83%A6%E3%83%BC%E3%82%AD%E3%83%A3%
E3%83%B3%E6%95%B0%E5%AD%A6%E6%A4%9C%E5%AE%9A%E8%A9%A6%E9%A8%93%E7%A0%
94%E7%A9%B6%E4%BC%9A-9784426600563/item/6214697/
なお、下の方の本については、昨年購入したものを参考にしています。
今も同じようなものであるとは限りません。どちらも、比較的最近の傾向に
沿っている問題集です。


848:132人目の素数さん
10/05/23 22:33:50
もうちょっとスマートなリンクの張り方を覚えよう
URLリンク(www.amazon.co.jp)

849:132人目の素数さん
10/05/24 08:34:27
>>847 thx &GJ


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch