面白い問題おしえて~な 十四問目at MATH
面白い問題おしえて~な 十四問目 - 暇つぶし2ch776:132人目の素数さん
08/10/15 22:06:26
以後同様に考え、この国での男女比は、
男の子の出生数/女の子の出生数=(1-p)+p×(1-p)+p^2×(1-p)+・・・+p^(n-1)×(1-p)+・・・/p×(1-p)+2×{p^2×(1-p)}+・・・+(n-1)×{p^(n-1)×(1-p)}+・・・
分子を(1-p)で、分母をpくくると、
男の子の出生数/女の子の出生数=(1-p)×{1+p+p^2+・・・+p^(n-1)+・・・}/p×[1-p+2×p×(1-p)+・・・+(n-1)×{p^(n-2)×(1-p)}+・・・]
ここで、分母中の大括弧の中身を考え、子どもの数がn人の場合について展開し、
n×p^(n-2)-n×p×p^(n-2)-p^(n-2)+p×p^(n-2)
=n×p^(n-2)-n×p^(n-1)-p^(n-2)+p^(n-1)
=p^(n-2)×(n-1)-p^(n-1)×(n-1)
となり、これにn-1人の場合の、
p^(n-3)×(n-2)-p^(n-2)×(n-2)
とn+1人の場合の、
p^(n-1)×n-p^n×n
を加えたとき、n人の場合の
p^(n-2)についてはn-1人のそれとの合算でp^(n-2)だけが残り
(p^(n-2)×(n-1)-p^(n-2)×(n-2)=p^(n-2))、p^(n-1)についてはn+1人との合算でp^(n-1)だけが残り
(p^(n-1)×n-p^(n-1)×(n-1)=p^(n-1))、
これをすべてのnについて行えば、結局のところ分子の中括弧の中身と同様に、1+p+p^2+・・・+p^(n-1)+・・・といった数列となるので、約分可能。したがって、
男の子の出生数/女の子の出生数=(1-p)/p
であり、自然体と変わらない男の子と女の子の人口比率となる。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch